Synthesis of Brassinosteroid with Signaling and Response to Abiotic Stress: Review

Open Access

Year : 2023 | Volume :10 | Issue : 3 | Page : 24-32
By

    Vipul G. Baldaniya

  1. Ajay V. Narwade

  2. Sagar K. Jadav

  1. Ph.D. Scholar, Department of plant physiology, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
  2. Associate Professor, Department of Plant Physiology, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
  3. Assistant Professor, Department of Genetics and Plant Breeding, College of Agriculture Waghai, Navsari Agricultural University, Navsari, Gujarat, India

Abstract

Brassinosteroids (BRs) are a group of plant steroid hormones with multiple roles in plant growth, development, and responses to stresses and signaling functions to promote cell expansion and cell division and plays a role in etiolation and reproduction. The entire synthetic pathway of sterol biosynthesis is brassinolide (BL) from the general campesterol synthesis pathway in Arabidopsis. Campesterol converts to BL in two different ways campesterol dependent or campesterol independent pathway. BRs are perceived by a plasma membrane-localized receptor and co-receptor complex including BRI1 and BAK1. The activated BRI1/BAK1 complex inactivates BIN2, which is one of the GSK3-like protein kinases and negatively regulates BR signaling, to promote the activity of two critical transcription factors, BES1 and BZR1 and BR responsive gene expression. In plants, BR deficiencies impair vital physiological processes and cause phenotypic abnormalities. A large number of studies show that BRs can positively influence plant responses to abiotic stresses such as heat, cold, drought, salinity, pesticides, and heavy metals.

Keywords: Hormone, Brassinolide, Synthesis, Signalling, Stress

[This article belongs to Research & Reviews : Journal of Botany(rrjob)]

How to cite this article: Vipul G. Baldaniya, Ajay V. Narwade, Sagar K. Jadav , Synthesis of Brassinosteroid with Signaling and Response to Abiotic Stress: Review rrjob 2023; 10:24-32
How to cite this URL: Vipul G. Baldaniya, Ajay V. Narwade, Sagar K. Jadav , Synthesis of Brassinosteroid with Signaling and Response to Abiotic Stress: Review rrjob 2023 {cited 2023 Jan 27};10:24-32. Available from: https://journals.stmjournals.com/rrjob/article=2023/view=92087

Full Text PDF Download

Browse Figures

References

1. Yokota, T., Ohnishi, T., Shibata, K., Asahina, M., Nomura, T., Fujita, T., Ishizaki, K. and Kohchi, T. Phytochemistry. Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. 2017; 136: 46-55.
2. Anwar, A., Liu, Y., Dong, R., Bai, L., Yu, X. and Li, Y., Biological research. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. 2018; 51:46.
3. Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R. and Smith, M. V., Nature. Brassins- a new family of plant hormones from rape pollen. 1970; 225:1065–1066.
4. Oh, E., Zhu, J. Y. and Wang, Z. Y., Nat Cell Biol. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. 2012; 14:802–9.
5. Nolan, T., Vukasinovic, N., Liu, D., Russinova, E. and Yin, Y., Plant Cell. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. 2019; https ://doi.org/10.1105/tpc.19.00335.
6. Wang, H., Wei, Z., Li, J. and Wang X., Brassinosteroids. Hormone Metabolism and Signaling in Plants. 2017; 291-326.
7. Pose, D., Castanedo, I., Borsani, O., Nieto, B., Rosado, A., Taconnat, L., Ferrer, A., Dolan, L., Valpuesta, V. and Botella M. A.; Plant J.; Identification of the Arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. 2009; 59:63-76.
8. Diener, A. C., Li, H., Zhou, W., Whoriskey, W. J., Nes, W. D. and Fink, G. R.; Plant Cell.; Sterol methyltransferase 1 controls the level of cholesterol in plants. 2000; 12:853-870.
9. Choe, S., Dilkes, B. P., Gregory, B. D., Ross, A. S., Yuan, H., Noguchi, T., Fujika, S., Takatsuto, S., Tanaka, A., Yoshida, S., Tax, F. E. and Feldmann K. A. Plant Physiol.; The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. 1999; 119:897-907.
10. Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota T., Nomura T., Yoshida, S. and Chua, N. H.; Plant Cell.; The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. 1998; 10:1677-1690.
11. Oh, M., Honey, S. H. and Tax, F. E.; Int. J. Mol. Sci.; The control of cell expansion, cell division, and vascular development by brassinosteroids: a historical perspective. 2020; 21:1743.
12. Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J. P., Wilson, I. A. and Chory, J.; Nature.; Structural basis of steroid hormone perception by the receptor kinase BRI1. 2011; 474:467-471.
13. Hwang, H., Ryu, H. and Cho, H. Brassinosteroid signaling pathways interplaying with diverse signaling cues for crop enhancement. 2021; 11:556.
14. Zhu, J., Sae-seaw, J. and Wang, Z.; Development at glance.; Brassinosteroid signalling. 2013; 140:1615-1620.
15. Gampala, S., Kim, T., He, J., Tang, W., Deng, Z., Bai, M., Guan, S., Lalonde, S., Sun, Y. and Gendron, J.; Dev. Cell.; An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. 2007; 13:177-189.
16. Ryu, H., Kim, K. Cho, H. Park, J. Choe, S. and Hwang, I.; Plant Cell.; Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. 2007; 19:2749-2762.
17. Kim, E. and Russinova, E.; Current Biology.; Brassinosteroid signalling. 2020; 30: R287-R301.
18. Rajewska, I., Talarek, M. and Bajguz, A.; Front Plant Sci.; Brassinosteroids and response of plants to heavy metals action. 2016; 7:629.
19. Xia, X. J., Fang, P. P., Guo, X., Qian, X. J., Zhou, J., Shi, K., Zhou, Y. H. and Yu, J. Q.; Plant Cell Environ.; Brassinosteroid-mediated apoplastic H2O2-glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. 2018; 41(5):1052- 1064.
20. Wang, B., Li, Y. and Zhang, W. H.; Ann Bot.; Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. 2012; 110(3):681-688.
21. Ahammed, G. J., Li, X., Liu, A. and Chen, S.; journal of plant growth regulation; Brassinosteroids in plant tolerance to abiotic stress. 2020.
22. Amraee, L., Rahmani, F. and Abdollahi, B. M.; Plant Physiol Biochem; 24-Epibrassinolide alters DNA cytosine methylation of Linum usitatissimum L. under salinity stress. 2019; 139:478-484.
23. Yin, W., Dong, N., Niu, M., Zhang, X., Li, L., Liu, J., Liu, B. and Tong, H.; Crop J.; Brassinosteroid-regulated plant growth and development and gene expression in soybean. 2019; 7(3):411-418.
24. Tanveer, M., Shahzad, B., Sharma A. and Khan, E. A.; Plant Physiology and Biochemistry; 24- Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. 2019; 135: 295-303.
25. Lone, W. A., Majeed, N., Yaqoob, U. and John, R.; Plant cell reports; Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. 2021; https://doi.org/10.1007/s00299-021- 02763-9.
26. Khan, I., Awan, S. A., Ikram, R., Rizwan, M., Akhtar, N., Yasmin, H., Sayyed, R. Z., Ali, S. and Ilyas, N.; Physiologia Plantarum; Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. 2020; 172:696-706.
27. Gill, M. B., Call, K., Zhang, G. and Zeng, F.; Plant growth regul.; Brassinolide alleviates the drought- induced adverse effects in barley by modulation of enzymatic antioxidants and ultrastructure. 2017; 82:447-455.
28. Bita, C. E. and Gerats, T.; Front. Plant Sci.; Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. 2013; 4:273.
29. Martinez, C., Espinosa-Ruiz, A., Lucas, M., Bernardo-Garcia, S., Franco-Zorrilla, J. M. and Prat, S.; EMBO J.; PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. 2018; 37:99552.
30. Martins, S., Jorda, A., Cayrel, A., Huguet, S., Roux, C. P. L., Ljung, K. and Vert, G.; Nat. Commun.; Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. 2017; 8:309.
31. Sadura, I. and Janeczko, A.; Biol Plant; Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. 2018; 62(4):601-616.
32. Zhang, Y., Liang, Y., Zhao, X., Jin, X., Hou, L., Shi, Y. and Ahammed, G. J.; Agronomy; Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. 2019; 9(11):733.
33. Zhao, M., Yuan, L., Wang, J., Xie, S., Zheng, Y., Nie, L., Zhu, S., Hou, J., Chen, G. and Wang, C.; BMC Genomics; Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature. 2019; 20(1):810.
34. Yue, J., You, Y., Zhang, L., Fu, Z., Wang, J., Zhang, J. and Guy, R. D.; J Plant Growth Regul.; Exogenous 24-epibrassinolide alleviates effects of salt stress on chloroplasts and photosynthesis in Robinia pseudoacacia L. seedlings. 2018; 38(2):669-682.
35. Singh, S. and Prasad, S. M.; Plant Growth Regul.; Effects of 28-homobrassinoloid on key physiological attributes of Solanum lycopersicum seedlings.


Regular Issue Open Access Article
Volume 10
Issue 3
Received September 19, 2021
Accepted October 27, 2021
Published January 27, 2023