AI Based Quality Analysis of Industrial Products

[{“box”:0,”content”:”[if 992 equals=”Open Access”]n

n

n

n

Open Access

nn

n

n[/if 992]n

n

Year : May 24, 2024 at 10:51 am | [if 1553 equals=””] Volume :14 [else] Volume :14[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : 01 | Page : 39-45

n

n

n

n

n

n

By

n

[foreach 286]n

n

n

Prasanna Khandarkar, Shyam Ingle, Adwait Kulkarni, Sapana S. Kamble

n

    n t

  • n

n

n[/foreach]

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Student, Student, Student, Professor Department of Electronics & Telecommunication, Sinhgad College of Engineering, Savitribai Phule University, Pune, Department of Electronics & Telecommunication, Sinhgad College of Engineering, Savitribai Phule University, Pune, Department of Electronics & Telecommunication, Sinhgad College of Engineering, Savitribai Phule University, Pune, Department of Electronics & Telecommunication, Sinhgad College of Engineering, Savitribai Phule University, Pune Maharashtra, Maharashtra, Maharashtra, Maharashtra India, India, India, India
  2. n[/if 1175][/foreach]

n[/if 2099][if 2099 equals=”Yes”][/if 2099]n

n

Abstract

nThe project introduces a new method for sampling data from a group, addressing limitations in traditional approaches. It highlights inefficiencies in inspecting only a few items from a batch, potentially leading to the rejection of entire lots due to isolated errors. To counter these challenges, a system is being designed to automatically inspect every gear in a batch. This system incorporates a conveyor belt for gear movement and a camera for analyzing gear parameters. Parameters are compared against those stored in a backend database, with gears meeting the specified criteria directed to the accepted lot and those failing diverted to the rejected lot using a shooting gun mechanism. This automated approach aims to enhance efficiency and accuracy in quality control, eliminating manual inspection and reducing the risk of rejecting entire lots due to isolated errors.

n

n

n

Keywords: Gear, MATLAB, Image processing, Manufacturing industries, Power transmission

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Production Research & Management(joprm)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Production Research & Management(joprm)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Prasanna Khandarkar, Shyam Ingle, Adwait Kulkarni, Sapana S. Kamble. AI Based Quality Analysis of Industrial Products. Journal of Production Research & Management. May 24, 2024; 14(01):39-45.

n

How to cite this URL: Prasanna Khandarkar, Shyam Ingle, Adwait Kulkarni, Sapana S. Kamble. AI Based Quality Analysis of Industrial Products. Journal of Production Research & Management. May 24, 2024; 14(01):39-45. Available from: https://journals.stmjournals.com/joprm/article=May 24, 2024/view=0

nn


nn[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] n[if 992 not_equal=”Open Access”]

[/if 992]n[if 992 not_equal=”Open Access”] [/if 992]nn[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Haque Nawaz, Himat Ali, “Gear Measurement Using Image Processing in Matlab”, ‘International Journal of Innovative Technology and Exploring Engineering (IJITEE)’, 2014, Volume-3, pp 43-47.
  2. Cheng Pengfei and Feng Changyong Henan, “Characteristic Value Extraction of Gear Defect Based on Image Processing”, ‘Journal of Multimedia’, 2013, Volume- 8, pp 198-205.
  3. Alkhadafe, A. Al-Habaibeh, A. Lotfi, Condition monitoring of helical gears using automated selection of features and sensors, Measurement (2016)
  4. Hazrat Ali, Syuhei Kurokawa,Kensuke Uesugi ‘ Camera Based Precision Measurement In Improving Measurement Accuracy’ Measurement 49(2014) 138-147.
  5. Zhang Jing, “The Research on the Application to Digital Image Technology in Hypoid Gear Contact Zone Detection”, ‘Journal of Computers’, 2011, Volume-. 6, PP 1519-1525
  6. García-Hernández, C., Gella-Marín, R., Huertas-Talón, J. L., & Berges-Muro, L. (2016). Algorithm for measuring gears implemented with general-purpose spreadsheet software. Measurement, 85, 1-12.
  7. Wan, F., Luo, H., & Liu, J. (2019, August). Online high-precision vision measurement method for large-size gear parameters. In Proceedings of the 2019 2nd International Conference on Robot Systems and Applications (pp. 20-24).
  8. Wijaya, T., Caesarendra, W., Tjahjowidodo, T., Pappachan, B. K., Wee, A., & Roslan, M. I. (2018). A review on sensors for real-time monitoring and control systems on machining and surface finishing processes.
  9. Khan, A. W., & Chen, W. (2009, February). Calibration of CNC milling machine by direct method. In 2008 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Applications (Vol. 7160, pp. 266-275). SPIE.
  10. Moroni, G., & Petrò, S. (2013). Automatic cutting-edge detection for a cylindrical mill. High value manufacturing: advanced research in virtual and rapid prototyping. CRC Press, Boca Raton, 457-461.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””]Regular Issue[else]Published[/if 424] Subscription Original Research

n

n

n

n

n

Journal of Production Research & Management

n

[if 344 not_equal=””]ISSN: 2249-4766[/if 344]

n

n

n

n

n

[if 2146 equals=”Yes”][/if 2146][if 2146 not_equal=”Yes”][/if 2146]n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 1748 not_equal=””]

[else]

[/if 1748]n

n

n

Volume 14
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] 01
Received April 23, 2024
Accepted May 3, 2024
Published May 24, 2024

n

n

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]