Exploring Polymer Substrates for CBSIW Antennas: Paper and Denim for Enhanced Gain and Bandwidth

Open Access

Year : 2024 | Volume : | : | Page : –
By

    M. Ravi Kishore

  1. Dr.K.C.B.Rao

  1. Research Scholar, 1Department of Electronics & Communication Engineering, JNTUK,Kakinada, Andhra Pradesh, India
  2. Professor, Department of Electronics & Communication Engineering, JNTUGV, Vizianagaram, Andhra Pradesh, India

Abstract

This paper presents a novel approach to antenna design by leveraging the unique properties of paper and Denim materials, both of which are polymers. This research underscores the potential of unconventional polymer materials like paper and jeans in antenna design, offering new avenues for the development of lightweight, flexible, and cost-effective communication devices for diverse wireless applications. The study focuses on the design and analysis of non-conventional substrate-based Circular Backed Substrate Integrated Waveguide (CBSIW) antennas. Specifically, two antennas, namely the Wearable Circular CBSIW antenna and Paper-based Circular CBSIW antenna, are designed and simulated using the HFSS simulator platform. These antennas are fabricated on Fabriano 5 paper and denim jeans substrates, respectively, and their performance characteristics are experimentally validated. The results demonstrate that the proposed multi-band paper-based antenna exhibits resonant frequencies at 2.4 GHz and 4.9 GHz with optimal bandwidths. Moreover, the denim-based antenna also shows promising performance. Notably, the peak gain of the proposed antennas reaches nearly 16 dB, indicating their suitability for various applications such as Wi-Fi, Bluetooth IIoT, Sub 6 GHz, and Intelligent Transport Systems.

Keywords: Polymer based substrates, Cellulose Fibre Based Paper Substrate, Synthetic Polymer Blended Denim Substrate, Cavity Backed Substrate Integrated Waveguide (CBSIW), Gain and Bandwidth of Antenna.

How to cite this article: M. Ravi Kishore, Dr.K.C.B.Rao.Exploring Polymer Substrates for CBSIW Antennas: Paper and Denim for Enhanced Gain and Bandwidth.Journal of Polymer and Composites.2024; ():-.
How to cite this URL: M. Ravi Kishore, Dr.K.C.B.Rao , Exploring Polymer Substrates for CBSIW Antennas: Paper and Denim for Enhanced Gain and Bandwidth jopc 2024 {cited 2024 Apr 24};:-. Available from: https://journals.stmjournals.com/jopc/article=2024/view=144195

Full Text PDF Download

References

  1. R. B. V. B, Ko. S. W. Design of compact, broadband, and multiband wearable antennas for wireless communication systems: A review. IEEE Antennas and Propagation Magazine (IEEE AP Mag) 2013; 55(1): 21-38.
  2. Abbasi, Q. H, Islam, M. T, Ali, et al. M. A comprehensive review of planar wearable antennas for WBAN applications. Sensors 2014; 14(6): 9454-9494.
  3. P, Saily, J. Kumpuniemi, et al. Wearable antenna technologies for body-centric communications: A review. IEEE Access 2017; 5: 9593-9611.
  4. R, Podilchak. S, Anagnostou D, Constantinides. C, Ramli. M, Lago. H, Soh. P. J, et al. Analysis and Design of Dual-Band Folded-Shorted Patch Antennas for Robust Wearable Applications. IEEE Open Journal of Antennas and Propagation. 2020; PP: 1-1.doi:10.1109/OJAP.2020.2991343
  1. Moro, R., Bozzi, M., Collado, A., et al. Plastic-based Substrate Integrated Waveguide (SIW) components and antennas. 2012 42nd European Microwave Conference, Amsterdam, Netherlands, 2012, pp. 1007-1010.
  2. Moscato, S., Delmonte, N., Silvestri, et al. Compact substrate integrated waveguide (SIW) components on paper substrate. 2015 European Microwave Conference (EuMC), Paris, France, 2015, pp. 24-27.
  3. Bozzi, M. Novel materials and fabrication technologies for SIW components for the Internet of Things. 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Nanjing, China, 2016, pp. 1-3.doi: 10.1109/iWEM.2016.7504979.
  1. Nauroze S. A, Hester, Tentzeris, et al. Inkjet-printed substrate integrated waveguides (SIW) with “drill-less” vias on paper substrates. 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 2016, pp. 1-4.
  2. Tan, L.R, Poo.Y. A broadband concave paper antenna. 2018 International Workshop on Antenna Technology (iWAT), Nanjing, China, 2018, pp. 1-3.
  3. Prebianto, Futra. A. Paper as a Substrate for Sensor Applications: A Review. 2018 International Conference on Applied Engineering (ICAE), Batam, Indonesia, 2018, pp. 1-5.
  4. Le Dam, T. H., et al. Reconfigurable Screen-Printed Patch Antenna on Paper for 4G and 5G Applications. 2022 52nd European Microwave Conference (EuMC), Milan, Italy, 2022, pp. 64-67.
  5. R., Kim. S., Bozzi. M, et al. Inkjet-printed paper-based substrate-integrated waveguide (SIW) components and antennas. International Journal of Microwave and Wireless Technologies (IJMWT) 2013; 5(3): 197-204.

doi:10.1017/S1759078713000494.

  1. M, Moro. R. SIW components and antennas based on eco-friendly materials and technologies: State-of-the-art and future applications. 2014 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Newport Beach, CA, USA, 2014, pp. 58-60.
  2. S, Bozzi. M, Pasian.M, et al. Innovative manufacturing approach for paper-based substrate integrated waveguide components and antennas. IET Microwaves, Antennas & Propagation 2016; 10.doi:10.1049/iet-map.2015.0125.
  1. R., Agneessens. S, Rogier. H, et al. Textile Microwave Components in Substrate Integrated Waveguide Technology. IEEE Transactions on Microwave Theory and Techniques.2015; 63(2): 422-432.
  2. Bozzi, M., Moscato, S., Silvestri, L., Delmonte, N., Pasian, M., & Perregrini. L, et al. Innovative SIW components on paper, textile, and 3D-printed substrates for the Internet of Things. 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 2015, pp. 1-3.
  3. Castel, T. Capacity of Broadband Body-to-Body Channels Between Firefighters Wearing Textile SIW Antennas. IEEE Transactions on Antennas and Propagation (IEEE Trans Antennas Prop.) 2016; 64(5): 1918-1931.
  4. Y, Tak. J, Choi. J. An All-Textile SIW Cavity-Backed Circular Ring-Slot Antenna for WBAN Applications. IEEE Antennas and Wireless Propagation Letters (IEEE Antennas Wireless Propag Lett) 2016; 15: 1995-1999.
  5. S, Silvestri. L, Delmonte. N, Pasian. M, Bozzi. M, Perregrini. L. et al. SIW components for the Internet of Things: Novel topologies, materials, and manufacturing techniques. 2016 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Austin, TX, USA, 2016, pp. 78-80.
  6. El gharbi. M, Ahyoud. S, Aknin. N, Gil. I, Fernández-Garcia. R, et al. Analysis on the Effects of the Human Body on the Performance of Wearable Textile Antenna in Substrate Integrated Waveguide Technology. 2020 Global Congress on Electrical Engineering (GC-ElecEng), Valencia, Spain, 2020, pp. 51-55.
  7. Compact, Low-Profile and Robust Textile Antennas with Improved Bandwidth for Easy Garment Integration. IEEE Access 2020; 8: 77490-77500.
  8. R. Wearable EBG-Backed Belt Antenna for Smart On-Body Applications. IEEE Transactions on Industrial Informatics. 2020; 16(11): 7177-7189.
  9. Çelenk. E, Tokan. N. T. All-Textile On-Body Antenna for Military Applications. IEEE Antennas and Wireless Propagation Letters. 2022; 21(5): 1065-1069.
  10. K, Soh. P. J, Yan. S, et al. Design of a Compact Dual-Band Textile Antenna Based on Metasurface. IEEE Transactions on Biomedical Circuits and Systems. 2022; 16(2): 211-221.
  11. M, Colby. R. H. Polymer physics. Oxford University Press; 2003.
  12. P. J. Principles of polymer chemistry. Cornell University Press; 1953.
  13. J. M. G. Polymers: Chemistry and Physics of Modern Materials. 3rd ed. CRC Press; 2008.
  14. P. C, Lodge. T. P. Polymer chemistry. CRC Press; 2007.
  15. Carraher, C. E. Eds. Seymour. R. B, Sen. A. K. Introduction to Polymer chemistry. 3rd ed. CRC Press; 2003.
  16. Polymer Formation. Petropolyplast [Internet].Available from: https://www.petropolyplast.com/en/article/17/Polymer-Formation.
  1. GeeksforGeeks [Internet].Available from: https://www.geeksforgeeks.org/polymerization/
  1. M, Fujiwara. T. Electromagnetic wave absorption properties of textiles with microfibers containing carbon powder. Textile Research Journal 2003; 73(6): 531-537.
  2. H, Naito. A. Electromagnetic wave absorbing properties of carbon nanotube/thermoplastic polyurethane composites in the millimeter waveband. Journal of Applied Physics 2005; 97(10): 104307.
  3. Gupta, Dubey. S. A review on electromagnetic interference shielding properties of polymer composites. Journal of Materials Science 2014; 49(15): 5109-5126.
  4. K. K, Ponnamma. D, Thomas. S, Grohens. Y, et al. Dielectric materials for electromagnetic interference shielding. Handbook of Polymers for Electrical Applications, Elsevier, 2014, pp. 269-290.
  5. Y, Zhu. Y, Fang. S, Yang. M. Flexible, Highly Graphitic Carbon Aerogels with High Electromagnetic Interference Shielding Effectiveness. Carbon 2017; 115: 629-639.
  6. Kim H, Abdala. A. A, Macosko. C. W. Graphene/polymer nanocomposites. Macromolecules 2010; 43(16): 6515-6530.
  7. S, Paul. S. A, Pothan. L. A, Deepa. B, et al. Natural fibres: structure, properties and applications. Nanocellulose Polymer Nanocomposites, Springer, 2011, pp. 3-42.
  8. S. K, Drzal. L. T, Zhai. L. Electrical conductivity and EMI shielding of cellulose nanofibril-polymer nanocomposites. Composites Part A: Applied Science and Manufacturing 2019; 124: 105475.
  9. R, Maiti. S, An. T. C, et al. Natural polymer-based nanocomposites for electromagnetic interference shielding applications. Polymer Nanocomposites for Dielectrics, Elsevier, 2020, pp. 195-224.
  10. J, Kim. S. H. Review of paper-based electronics for biomedical applications. Biotechnology and Bioprocess Engineering 2018; 23(1): 28-38.
  11. A, Marsh. K, Pang. S, Staiger. M, et al. Ionic Liquids and Their Interaction with Cellulose. Chemical Reviews. 2009; 109: 6712-6728. doi:10.1021/cr9001947.
  12. Sarwar, N. Desizing: A Deciding Factor in Denim Washing. LinkedIn [Internet]. Available from:https://www.linkedin.com/pulse/desizing-a-deciding-factor-denim-washing-nazim-sarwar/
  13. D, Wu. K. Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave and Wireless Components Letters 2001; 11(2): 68-70.
  14. K. Substrate integrated circuits: State-of-the-art and perspectives. IEEE Journal of Solid-State Circuits 2009; 44(1): 14-32.
  15. F, Wu. K, Wu. Y, et al. Planar circuits using substrate integrated waveguides. IEEE Microwave Magazine 2005; 6(1): 66-78.
  16. D, Wu. K. Accurate modeling, wave mechanisms, and applications of substrate integrated waveguides. IEEE Transactions on Microwave Theory and Techniques 2003; 51(2): 593-596.
  17. M, Perregrini. L, Wu. K. The substrate integrated circuits – a new concept for high-frequency electronics and optoelectronics. Proceedings of the IEEE 2015; 103(4): 487-504.
  18. R. E. Foundations for Microwave Engineering. McGraw-Hill Education; 2001.
  19. G, Scatena. M. Techniques for measurements in anechoic chambers and open-area test sites: Theory and practice. Artech House; 2010.

Ahead of Print Open Access Original Research
Volume
Received March 18, 2024
Accepted April 6, 2024
Published April 24, 2024