Impact of Tool rotating speeds on the Mechanical characteristics of dissimilar friction stir-welded AZ80A-Mg – AA6061-Al joints

Open Access

Year : 2024 | Volume : | : | Page : –

P J Lokesh Kumar

P Sevvel

S Shankaranarayanan

C Jayabalan

S D Sekar

K Sengottaiyan

  1. Assistant Professor Department of Mechanical Engineering, R.M.K. Engineering College, Tamil Nadu India
  2. Professor Department of Mechanical Engineering, S.A. Engineering College Tamil Nadu India
  3. Assistant Professor Department of Mechanical Engineering, Velammal Engineering College Tamil Nadu India
  4. Assistant Professor Department of Mechanical Engineering, AMET University India
  5. Associate Professor Department of Mechanical Engineering, R.M.K. Engineering College, India
  6. Assistant Professor Department of Mechanical Engineering, R.M.K. Engineering College India


In this investigation, separate AA6061-Al and AZ80A-Mg alloy plates were effectively joined through stir welding with friction. We looked closely at the weld joints’ characteristics, especially their mechanical aspects. In the experiment, here were multiple tool rotating rates (rpm) of 800, 1000, 1200, 1400, and 1600 used. A cylindrical pin-equipped tool featuring a tapered profile was utilized, inserted into the AA6061 alloy plate is offset by 0.5 mm, while maintaining a 30 mm/min constant traverse speed. The experimental findings indicated that optimal levels of frictional heat were achieved when 1200 rpm was the rotational speed of the tool. As a result, this specific joint exhibited a notable tensile strength of 225 MPa, representing approximately 77.76% of AZ80A’s tensile strength and 72.25% of AA6061 alloy. These results underscore the significance of rotating speed of the tool in influencing the mechanical performance of stir-welded friction joints between distinct aluminum and magnesium alloys

Keywords: friction stir-weld, tensile test, tool speed, traverse rate, aluminum and magnesium alloys

How to cite this article: P J Lokesh Kumar, P Sevvel, S Shankaranarayanan, C Jayabalan, S D Sekar, K Sengottaiyan. Impact of Tool rotating speeds on the Mechanical characteristics of dissimilar friction stir-welded AZ80A-Mg – AA6061-Al joints. Journal of Polymer and Composites. 2024; ():-.
How to cite this URL: P J Lokesh Kumar, P Sevvel, S Shankaranarayanan, C Jayabalan, S D Sekar, K Sengottaiyan. Impact of Tool rotating speeds on the Mechanical characteristics of dissimilar friction stir-welded AZ80A-Mg – AA6061-Al joints. Journal of Polymer and Composites. 2024; ():-. Available from:

Full Text PDF Download


  1. PJ Lokesh Kumar, P Sevvel, TG Loganathan and D Prakash. Investigation on the distribution and role of intermetallic aggregates in influencing the mechanical strength of the friction stir welded AZ91C Mg – AA6061 Al alloy joints. Res. Express 10 026516.DOI 10.1088/2053-1591/acbbbb.
  2. Chinnadurai T, Arungalai Vendan S. Thermal and structural analysis of ultrasonic-welded PC/ ABS blend for automobile applications. Therm. Anal. Calorim. 2017, pp. 1995–2003. DOI:10.1007/s10973-016-5748-4.
  3. Subramani P, Manikandan M. Development of gas tungsten arc welding using current pulsing technique to preclude chromium carbide precipitation in aerospace-grade alloy 80A. J. Miner. Metall. Mater. 2019, pp. 210–221. DOI:10.1007/s12613-019-1726-8
  4. Kwee I, De Waele W, Faes K. Weldability of high-strength aluminium alloy EN AW-7475-T761 sheets for aerospace applications, using refill friction stir spot welding. Weld World. 2019, pp. 1001–1011. DOI:10.1007/s40194-019-00732-1
  5. Kurzynowski T, Pawlak A, Smolina I.The potential of SLM technology for processing magnesium alloys in aerospace industry. Arch. Civ. Mech. Eng. A. 2020, pp. 23. DOI:10.1007/s43452-020-00033-1
  6. Srinivasan D, Ananth K. Recent Advances in Alloy Development for Metal Additive Manufacturing in Gas Turbine/Aerospace Applications: A Review. J Indian Inst Sci. 2022, pp. 311–349. DOI:10.1007/s41745-022-00290-4
  7. Salvinder S, Shahrum A, Mohamed N. A. N. Discretized Markov chain in damage assessment using Rainflow cycle with effects of mean stress on an automobile crankshaft. Mech. Sci. Technol. 2016, pp. 3539–3551. DOI:10.1007/s12206-016-0714-4
  8. Rodionova, I. G, Amezhnov A, V D’yakonov, D. L., Shaposhnikov, N. G, Baklanova, O. N.; Gladchenkov, Y. S.: Study of the Effect of Microstructure Characteristics on Corrosion Resistance of Cold- Rolled Micro-Alloyed Sheet Steels (Hsla) of Strength Classes 340–420 for Automobile Building. 2020, pp. 1165–1177. DOI:10.1007/s11015-020-00939-4
  9. Kasprzak, W.; Czerwinski, F.; Niewczas, M.; Chen, D. L.: Correlating hardness retention and phase transformations of Al and Mg cast alloys for aerospace applications. Mater. Eng. Perform, 2015, pp. 1365–1378. DOI:10.1007/s11837-012-0340-2
  10. Yuan, L. Y.; Han, P. W.; Asghar, G.; Liu, B. L.; Li, J. P.; Hu, B.; Fu, P. H.; Peng, L. M.: Development of High Strength and Toughness Non-Heated Al- Mg-Si Alloys for High-Pressure Die-Casting. Acta Metall Sin-Engl 2021, pp. 845–860. DOI:10.1007/s40195-020-01174-1
  11. Liu, Z.; Xiong, B.; Li, X.; Yan, L.; Li, Z.; Zhang, Y.; Liu, H.: Effect of Friction Coefficient on Deep Drawing of 6A16 Aluminum Alloy for Automobile Body. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020, pp. 208–214. DOI:10.1007/s11595-020-2245-1
  12. Oladimeji, O. O.; Taban, E.: Trend and innovations in laser beam welding of wrought aluminum alloys. Weld World. 2016, pp. 415–457. DOI:10.1007/s40194-016-0317-9
  13. Dev, S.; Ramkumar, K. D.; Arivazhagan, N.; Rajendran, R.: Effect of Continuous and Pulsed Current GTA Welding on the Performance of Dissimilar Welds Involving Aerospace Grade Alloys. Indian Inst. Met. 2017, pp. 729–739. DOI:10.1007/s12666-017-1085-y
  14. Jiang, X.; Chen, S.: Texture evolution and plastic deformation mechanism in magnetic pulse welding of dissimilar Al and Mg alloys. Weld World. 2018, pp. 1159–1171. DOI:10.1007/s40194-018-0607-5
  15. Shin, H. S.; de Leon, M.: Analysis of interface solid-state reaction on dissimilar ultrasonic spot welding of Al-Mg alloys. Mater. Int. 2017, pp. 554–561. DOI:10.1007/s12540-017-6409-2
  16. Islam, M. R.; Ishak, M.; Shah, L. H.; Idris, S. R. A.; Meric, C.: Dissimilar welding of A7075-T651 and AZ31B alloys by gas metal arc plug welding method. J. Adv. Manuf. Technol. 2017, pp. 2773–2783. DOI:10.1007/s00170-016-8993-6
  17. Ghosh, M.; Gupta, R. K.; Husain, M. M.: Friction Stir Welding of Stainless Steel to Al Alloy: Effect of Thermal Condition on Weld Nugget Microstructure. Mater. Trans. A. 2014, pp. 854–863. DOI:10.1007/s11661-013-2036-9
  18. Lu, Y.; Xu, X.; Zhang, B.; Luo, F.; Qiang, W.; Wang, S.; Cao, J.; Li, W.: Microstructural analysis and mechanical behavior of TC4 titanium alloy and 304 stainless steel by friction stir lap welding. Weld World. 2021, pp. 1915–1930. DOI:10.1007/s40194-021-01133-z
  19. Giridharan, K.; Sevvel, P.; Stalin, B.; Ravichandran, M.; Sureshkumar, P.: Microstructural Analysis and Mechanical Behaviour of Copper CDA 101/AISI-SAE 1010 Dissimilar Metal Welds Processed by Friction Stir Welding. Mater Res-Ibero-Am J. 2022, p.e20210430. DOI:10.1590/1980-5373-MR-2021-0430
  20. Meng, X.; Hunag, Y.; Cao, J.; Shen, J.; Jorge F.dos Santos.: Recent progress on control strategies for inherent issues in friction stir welding. Mater. Sci. 2021, p. 100706. DOI: 10.1016/j.pmatsci.2020.100706
  21. Dhanesh Babu, S. D.; Sevvel, P.; Senthil Kumar, R.: Simulation of heat transfer and analysis of impact of tool pin geometry and tool speed during friction stir welding ofAZ80A Mg alloy plates. J. Mech. Sci. Technol. 2020, pp. 4239– 4250. DOI:10.1007/s12206-020-0916-7
  22. Kwon, Y. J.; Shigematsu, I.; Saito, N.: Dissimilar friction stir welding between magnesium and aluminum alloys. Lett. 2008, pp. 3827–3829. DOI:10.1016/j.matlet.2008.04.080
  23. Zhao, Y.; Jiang, S.; Yang, S.; Lu, Z.; Yan, K.: Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding. J. Adv. Manuf. Technol. 2016, pp. 673–679. DOI:10.1007/s00170-015-7624-y
  24. Jayaraj, R. K.; Malarvizhi, S.; Balasubramanian, V.: Electrochemical corrosion behaviour of stir zone of friction stir welded dissimilar joints of AA6061 aluminium–AZ31B magnesium alloys. Nonferrous Met. Soc., 2017, pp. 2181– 2192. DOI:10.1016/S1003-6326(17)60244-9
  25. McLean, A. A.; Powell, G. L. F.; Brown, I. H.; Linton, V. M.: Friction stir welding of magnesium alloy AZ31B to aluminium alloy 5083. Technol. Weld. Join. 2013, pp. 462–464. DOI:10.1179/136217103225009134
  26. Malarvizhi, S.; Balasubramanian, V. Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum-AZ31B magnesium alloys, Des. 2012, pp. 453–460. DOI: 10.1016/j.matdes.2012.04.008
  27. Xie, Y., Meng, X., Wang, F., Jiang, Y., Ma, X., Wan, L., Huang, Y. Insight on corrosion behavior of friction stir welded AA2219/AA2195 joints in astronautical engineering, Sci. 2021, p. 109800. DOI: 10.1016/j.corsci.2021.109800
  28. Lokesh Kumar, P. J., Sevvel, P. and Loganathan, T. G., Impact of tool rotational speed on the microstructural transitions and tensile properties of the dissimilar AZ80A-Mg – AA6061-Al joints fabricated by friction stir welding. Practical Metallography, vol. 60, no. 5, 2023, pp. 289-318.

Ahead of Print Open Access Original Research
Received February 28, 2024
Accepted March 7, 2024
Published April 22, 2024