Dielectric Properties of Reduced Graphene Oxide with Nickel Cobalt Ferrite and Nickel Zinc Ferrite Epoxy Nanocomposites

Open Access

Year : 2024 | Volume :11 | Special Issue : 11 | Page : 28-37
By

Manuel George1*

P.P. George

  1. 1Associate Professor Department of Mechanical Engineering Kerala India
  2. Professor Department of Basic Sciences Kerala India

Abstract

In this work, two systems of the composite were prepared using NiCoFe and NiZnFe with reduced graphene oxide(rGO) epoxy and the samples were subjected to electrochemical impedance spectroscopy (EIS). The Quality factor and loss tangent values of the composite was found out as a function of frequency. The modified ferrite-graphene-epoxy blends show dielectric loss and Quality factor values at low frequency. The incorporation of graphene aims to improve electrical conductivity, while the magnetic nanoparticles contribute to enhanced dielectric permittivity. The fabrication process involves the dispersion of these nanofillers within the epoxy matrix, followed by thorough characterization of the resulting nanocomposites using techniques such as impedance spectroscopy and scanning electron microscopy. NiZnFe-rGO obtained higher Quality factor in the intermediate concentration at higher frequencies but the loss tangent obtained least in the higher frequency range. The dielectric loss was least with NiCoFe-rGO which is due to the decrease of grain size at the same time dielectric loss was high for NiZnFe-rGO. Thus, a synergistic effect obtained with multifunctional fillers on the dielectric constant, dielectric loss, and electrical conductivity of the nanocomposites. The study aims to provide insights into the tailored design of advanced dielectric materials for applications in electronic devices, capacitors, and electromagnetic shielding, exploiting the unique properties of graphene and magnetic nanoparticles in epoxy nanocomposites

Keywords: Quality factor, dielectric constant, loss tangent, frequency range, graphene, epoxy

[This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)]

How to cite this article: Manuel George1*, P.P. George. Dielectric Properties of Reduced Graphene Oxide with Nickel Cobalt Ferrite and Nickel Zinc Ferrite Epoxy Nanocomposites. Journal of Polymer and Composites. 2024; 11(11):28-37.
How to cite this URL: Manuel George1*, P.P. George. Dielectric Properties of Reduced Graphene Oxide with Nickel Cobalt Ferrite and Nickel Zinc Ferrite Epoxy Nanocomposites. Journal of Polymer and Composites. 2024; 11(11):28-37. Available from: https://journals.stmjournals.com/jopc/article=2024/view=137933

Full Text PDF Download

Browse Figures

References

  1. A. Azeez, K. Y. Rhee, S. J. Park, and D. Hui, “Epoxy clay nanocomposites – processing, properties and applications: A review,” Compos. Part B Eng., vol. 45, no. 1, pp. 308–320, Feb. 2013, doi: 10.1016/j.compositesb.2012.04.012.
  2. F. Shukur, N. A. Majid, R. Ithnin, and M. F. Z. Kadir, “Effect of plasticization on the conductivity and dielectric properties of starch-chitosan blend biopolymer electrolytes infused with NH4Br,” Phys. Scr., vol. T157, 2013, doi: 10.1088/0031-8949/2013/T157/014051.
  3. Bementa, M. A. Jothi Rajan, and E. S. Gnanadass, “Effect of Prolonged Duration of Gelatinization in Starch and Incorporation with Potassium Iodide on the Enhancement of Ionic Conductivity,” Polym. – Plast. Technol. Eng., vol. 56, no. 15, pp. 1632–1645, 2017, doi: 10.1080/03602559.2017.1289392.
  4. George and A. Mohanty, “Investigation of mechanical properties of graphene decorated with graphene quantum dot-reinforced epoxy nanocomposite,” J. Appl. Polym. Sci., vol. 137, no. 19, pp. 1–12, 2020, doi: 10.1002/app.48680.
  5. W. Tavernier, K., Varlow, B. R. & Auckland, “Electrical tree modelling in non-linear insulation. Conference on Electrical Insulation and Dielectric Phenomena,” Annu. Rep. Atlanta, USA. IEEEe.
  6. M. Joshi and K. Deshmukh, “Study of conjugated polymer/graphene oxide nanocomposites as flexible dielectric medium,” J. Mater. Sci. Mater. Electron., vol. 27, no. 4, pp. 3397–3409, 2016, doi: 10.1007/s10854-015-4172-z.
  7. Anandraj and G. M. Joshi, “Fabrication, performance and applications of integrated nanodielectric properties of materials–a review,” Compos. Interfaces, vol. 25, no. 5–7, pp. 455–489, 2018, doi: 10.1080/09276440.2017.1361717.
  8. O. Henk, T. W. Kortsen, and T. Kvarts, “Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica,” High Perform. Polym., vol. 11, no. 3, pp. 281–296, 1999, doi: 10.1088/0954-0083/11/3/304.
  9. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, and L. Ju, “Microstructure, dielectric properties and impedance spectroscopy of Ni doped CaCu3Ti4O12 ceramics,” RSC Adv., vol. 6, no. 61, pp. 55984–55989, 2016, doi: 10.1039/c6ra07726a.
  10. Jancar, D. Suvorov, M. Valant, and G. Drazic, “Characterization of CaTiO 3 -NdAlO 3 dielectric ceramics,” vol. 23, pp. 1391–1400, 2003.
  11. Murugesan, R. Nithya, S. Kalainathan, and S. Hussain, “High temperature dielectric relaxation anomalies in Ca0.9Nd0.1Ti0.9Al0.1O3-δ single crystals,” RSC Adv., vol. 5, no. 96, pp. 78414–78421, 2015, doi: 10.1039/c5ra15876a.
  12. John Lewis, “Nano-composite dielectrics: The dielectric nature of the nano-particle environment,” IEEJ Trans. Fundam. Mater., vol. 126, no. 11, pp. 1020–1030, 2006, doi: 10.1541/ieejfms.126.1020.
  13. Hallouet, P. Desclaux, B. Wetzel, A. K. Schlarb, and R. Pelster, “Analysing dielectric interphases in composites containing nano- and micro-particles,” J. Phys. D. Appl. Phys., vol. 42, no. 6, 2009, doi: 10.1088/0022-3727/42/6/064004.
  14. Sabu, E. Bementa, Y. Jaya Vinse Ruban, and S. Ginil Mon, “A novel analysis of the dielectric properties of hybrid epoxy composites,” Adv. Compos. Hybrid Mater., vol. 3, no. 3, pp. 325–335, 2020, doi: 10.1007/s42114-020-00166-0.
  15. Cheng, G. Yu, B. Yu, and X. Zhang, “The research of conductivity and dielectric properties of ZnO/LDPE composites with different particles size,” Materials (Basel)., vol. 13, no. 18, 2020, doi: 10.3390/ma13184136.
  16. Zhang, M. Q. Le, O. Zahhaf, J. F. Capsal, P. J. Cottinet, and L. Petit, “Enhancing dielectric and piezoelectric properties of micro-ZnO/PDMS composite-based dielectrophoresis,” Mater. Des., vol. 192, p. 108783, 2020, doi: 10.1016/j.matdes.2020.108783.
  17. C. Marcano et al., “Improved Synthesis of Graphene Oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, Aug. 2010, doi: 10.1021/nn1006368.
  18. V. Lakshmi and P. Tambe, “EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites,” Compos. Interfaces, vol. 24, no. 9, pp. 861–882, 2017, doi: 10.1080/09276440.2017.1302202.
  19. Maaz, W. Khalid, A. Mumtaz, S. K. Hasanain, J. Liu, and J. L. Duan, “Magnetic characterization of Co1-xNixFe2O4 (0≤x≤1) nanoparticles prepared by co-precipitation route,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 41, no. 4, pp. 593–599, 2009, doi: 10.1016/j.physe.2008.10.009.
  20. S. Anil Kumar, J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande, and S. K. Date, “Low temperature synthesis of Ni0.8Zn0.2Fe2O4 powder and its characterization,” Mater. Lett., vol. 27, no. 6, pp. 293–296, 1996, doi: 10.1016/0167-577X(96)00010-9.
  21. Yang et al., “Fabrication of NiCo2-Anchored Graphene Nanosheets by Liquid-Phase Exfoliation for Excellent Microwave Absorbers,” ACS Appl. Mater. Interfaces, vol. 9, no. 14, pp. 12673–12679, 2017, doi: 10.1021/acsami.6b16144.
  22. M. Rashad, E. M. Elsayed, M. M. Moharam, R. M. Abou-Shahba, and A. E. Saba, “Structure and magnetic properties of NixZn1-xFe2O4 nanoparticles prepared through co-precipitation method,” J. Alloys Compd., vol. 486, no. 1–2, pp. 759–767, 2009, doi: 10.1016/j.jallcom.2009.07.051.
  23. Singh, A. Goyal, and S. Singhal, “Nickel-doped cobalt ferrite nanoparticles: Efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes,” Nanoscale, vol. 6, no. 14, pp. 7959–7970, 2014, doi: 10.1039/c4nr01730g.
  24. J. C., “Ferroelectrics: An Introduction to the Physical Principles.,” Van Nostrand-Reinbold, London..
  25. Dhanumalayan and S. Kaleemulla, “Enhanced structure, dielectric, and thermal properties of attapulgite clay and hexagonal boron nitride admixture loaded polymer blends,” J. Mater. Sci. Mater. Electron., vol. 31, no. 20, pp. 17828–17842, 2020, doi: 10.1007/s10854-020-04337-z.
  26. Dhanumalayan and G. M. Joshi, “Quality factor of potassium hexa-titanate oxide ceramic reinforced polymer blends for broad band applications,” AIP Conf. Proc., vol. 1992, 2018, doi: 10.1063/1.5047957.
  27. Ahmad Z., “Polymer dielectric materials,” Mater. (IntechOpen, London).
  28. Liang E.C., “Microwave J.,” vol. 58(2), p..
  29. C. H. Koh, Z. A. Ahmad, and A. A. Mohamad, “Bacto agar-based gel polymer electrolyte,” Ionics (Kiel)., vol. 18, no. 4, pp. 359–364, 2012, doi: 10.1007/s11581-011-0631-6.
  30. Nayak, T. Badapanda, A. K. Singh, and S. Panigrahi, “An approach for correlating the structural and electrical properties of Zr4+-modified SrBi4Ti4O15/SBT ceramic,” RSC Adv., vol. 7, no. 27, pp. 16319–16331, 2017, doi: 10.1039/c7ra00366h.
  31. Rayssi, S. El Kossi, J. Dhahri, and K. Khirouni, “Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-: XCo4 x /3O3 (0 ≤ x ≤ 0.1),” RSC Adv., vol. 8, no. 31, pp. 17139–17150, 2018, doi: 10.1039/c8ra00794b.
  32. Rayssi, F. I. H. Rhouma, J. Dhahri, K. Khirouni, M. Zaidi, and H. Belmabrouk, “Structural, electric and dielectric properties of Ca0.85Er0.1Ti1−xCo4x/3O3(0 ≤ x ≤ 0.1),” Appl. Phys. A Mater. Sci. Process., vol. 123, no. 12, pp. 1–13, 2017, doi: 10.1007/s00339-017-1365-8.
  33. B. Velhal, N. D. Patil, A. R. Shelke, N. G. Deshpande, and V. R. Puri, “Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: Effect of nickel concentration,” AIP Adv., vol. 5, no. 9, 2015, doi: 10.1063/1.4931908.
  34. C. Hee, I. H. S. C. Metselaar, M. R. Johan, and M. Mehrali, “Preparation of Nickel Zinc Ferrite by Electrophoretic Deposition,” J. Electrochem. Soc., vol. 159, no. 1, pp. E18–E22, 2011, doi: 10.1149/2.068201jes.
  35. George et al., “Thermal and magnetic properties study of NiCo2O4/graphene and NiFe2O4/graphene,” Mater. Today Proc., vol. 72, no. xxxx, pp. 2921–2927, 2023, doi: 10.1016/j.matpr.2022.07.457.
  36. Wang and Y. Yang, “The Synergistic Effects of the Micro and Nano Particles in Micro-nano Composites on Enhancing the Resistance to Electrical Tree Degradation,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017, doi: 10.1038/s41598-017-08761-w.
  37. Tang et al., “Temperature effects on the dielectric properties and breakdown performance of h-BN/epoxy composites,” Materials (Basel)., vol. 12, no. 24, 2019, doi: 10.3390/ma1224112.
  38. Yang, X. Huang, Y. Huang, L. Xie, and P. Jiang, “Polymerization : Toward Ferroelectric Polymer Nanocomposites with,” Chem. Mater., vol. 25, pp. 2327–2338, 2013.

 


Special Issue Open Access Original Research
Volume 11
Special Issue 11
Received December 5, 2023
Accepted January 29, 2024
Published April 2, 2024