Performance Evaluation of Eco-friendly Cutting Fluid in Machining Process—An Approach towards Environmentally Friendly Production

[{“box”:0,”content”:”[if 992 equals=”Open Access”]

n

Open Access

n

[/if 992]n

n

Year : April 1, 2024 at 10:32 am | [if 1553 equals=””] Volume : [else] Volume :[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : | Page : –

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Javvadi Eswara Manikanta, B. Naga Raju, Chitrada Prasad, Naveen Kumar Gurajala, N Malleswararao Battina

  1. [/foreach]

    n

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Research Scholar, Professor, Assistant Professor, Assistant Professor, Assistant Professor, Trans-Disciplinary Research Hub, Department of Mechanical Engineering, Department of Physics, Aditya College of Engineering, Department of Mechanical Engineering, CMR College of Engineering and Technology, Department of Mechanical Engineering, Shri Vishnu Engineering College for Women, Andhra Pradesh, Andhra Pradesh, Andhra Pradesh, Hyderabad, Andhra Pradesh, India, India, India, India, India
  2. n[/if 1175][/foreach]

[/if 2099][if 2099 equals=”Yes”][/if 2099]nn

n

Abstract

nThe machining industry’s evolving environmental consciousness has prompted a growing demand for
cutting fluids devoid of chlorine and sulphur, thus fostering sustainable machining practices. This
surge in demand is driven by mounting apprehensions over environmental contamination and worker
safety. As the industry transitions to modern cutting fluids, it becomes imperative to comprehend their
effectiveness and the optimal machine parameters required for their deployment in the turning
process. In our current study, we employ the Taguchi technique in conjunction with Grey Relational
Analysis (GRA) to assess the efficacy of parameter optimization and its impact on the turning of SS
304 steel, utilizing non-toxic, biodegradable vegetable-based cutting fluids. Our investigation delves
into the influence of various process variables, including cooling conditions (CC), cutting speed (Vc),
feed rate (f), and depth of cut (a), on critical response parameters like Cutting Force (CF) and
Surface Roughness (SR). This is accomplished through rigorous Analysis of Variance (ANOVA) to
identify the parameters of significant influence. The study reveals that employing the Minimum
Quantity Lubrication (MQL) method at a cutting speed of 1000 revolutions per minute, a feed rate of
90 mm/minute, and a 0.3 depth of cut leads to substantial enhancements in machining performance.
The microstructure of the optimized sample is investigated through the use of a Scanning Electron
Microscope. Optimally, MQL machining at Vc 1000 rpm, f 90 mm/min, and a 0.3 mm minimized CF.
Additionally, the type of cutting coolant (CC), a, Vc, and f contributed 77.77%, 6.54%, 4.606%, and
2.328%, respectively, to CF reduction.

n

n

n

Keywords: Eco friendly cutting fluids, Turning, Minimum Quantity Lubrication (MQL), Surface roughness, cutting force, Optimization.

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Polymer and Composites(jopc)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Javvadi Eswara Manikanta, B. Naga Raju, Chitrada Prasad, Naveen Kumar Gurajala, N Malleswararao Battina Performance Evaluation of Eco-friendly Cutting Fluid in Machining Process—An Approach towards Environmentally Friendly Production jopc ; :-

n

How to cite this URL: Javvadi Eswara Manikanta, B. Naga Raju, Chitrada Prasad, Naveen Kumar Gurajala, N Malleswararao Battina Performance Evaluation of Eco-friendly Cutting Fluid in Machining Process—An Approach towards Environmentally Friendly Production jopc {cited };:-. Available from: https://journals.stmjournals.com/jopc/article=/view=0

n


n[if 992 equals=”Open Access”] Full Text PDF Download[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘Full Text PDF‘);n }nelse if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }nelse if (fieldValue == ‘jopc’) { document.write(‘Full Text PDF‘); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

Bedi, S.S., Behera, G.C., Datta, S.: Effects of Cutting Speed on MQL Machining Performance of
AISI 304 Stainless Steel Using Uncoated Carbide Insert: Application Potential of Coconut Oil
and Rice Bran Oil as Cutting Fluids. Arab. J. Sci. Eng. 45, 8877–8893 (2020).
https://doi.org/10.1007/s13369-020-04554-y
2. Manikanta, J.E.: Self Textured Cutting Tools in Dry Machining. 5, 356–359 (2018)
3. Haque, S., Ansari, A.H., Bharti, P.K.: Experimental Evaluation of Process Parameters Effect on
Mechanical and Machining Properties of Al6061–Cu–SiCp-Reinforced Metal Matrix Composite.
Arab. J. Sci. Eng. 41, 4303–4311 (2016). https://doi.org/10.1007/s13369-016-2094-6
4. Soni, H., Mashinini, P.M.: An Analysis on Tool-Chip Interaction During Dry Machining of
SS316 Using Textured Carbide Tools. Arab. J. Sci. Eng. 46, 7611–7621 (2021).
https://doi.org/10.1007/s13369-021-05499-6
5. Badiger, P. V., Desai, V., Ramesh, M.R., Prajwala, B.K., Raveendra, K.: Cutting Forces, Surface
Roughness and Tool Wear Quality Assessment Using ANN and PSO Approach During
Machining of MDN431 with TiN/AlN-Coated Cutting Tool. Arab. J. Sci. Eng. 44, 7465–7477
(2019). https://doi.org/10.1007/s13369-019-03783-0
Journal of Polymer & Composites
Volume 11, Special Issue 12
ISSN: 2321-2810 (Online), ISSN: 2321-8525 (Print)
© STM Journals 2023. All Rights Reserved S159
6. Corn, M., In, O., Steel, S., Manikanta, J.E., Raju, B.N., Bhadri, R., Chekuri, R.:
PERFORMANCE ASSESSMENT OF NANO ALUMINA MIXED CORN OIL IN STAINLESS
STEEL. 12, 5723–5734 (2023). https://doi.org/10.31838/ecb/2023.12.8.456
7. Shaikh, V.A., Boubekri, N.: Using vegetable-oil-based sustainable metal working fluids to
promote green manufacturing. Int. J. Manuf. Mater. Mech. Eng. 10, 1–19 (2020).
https://doi.org/10.4018/IJMMME.2020010101
8. Singh, G., Aggarwal, V., Singh, S.: Critical review on ecological, economical and technological
aspects of minimum quantity lubrication towards sustainable machining. J. Clean. Prod. 122185
(2020). https://doi.org/10.1016/j.jclepro.2020.122185
9. Ali, M.A.M., Azmi, A.I., Murad, M.N., Zain, M.Z.M., Khalil, A.N.M., Shuaib, N.A.: Roles of
new bio-based nanolubricants towards eco-friendly and improved machinability of Inconel 718
alloys. Tribol. Int. 144, 106106 (2020). https://doi.org/10.1016/j.triboint.2019.106106
10. Manikanta, J.E., Naga Raju, B., Phanisankar, B.S.S., Rajesh, M., Kotteda, T.K.: Nanoparticle
Enriched Cutting Fluids in Metal Cutting Operation: A Review. Lect. Notes Mech. Eng. 147–156
(2023). https://doi.org/10.1007/978-981-19-2188-9_14
11. Chuang, K., Lan, T., Zhang, L., Chen, Y., Dai, X.: SS symmetry Parameter Optimization for
Computer Numerical. (2019)
12. Manikanta, J.E., Ganesh Gupta, B.N.V.S., Manikanta, J.T., Pradeep, R.: Integrality
characterization of machining with nano cutting fluids. Int. J. Mech. Eng. Technol. 9, 1033–1042
(2018)
13. Thakur, A., Gangopadhyay, S.: State-of-the-art in surface integrity in machining of nickel-based
super alloys. Int. J. Mach. Tools Manuf. 100, 25–54 (2016).
https://doi.org/10.1016/j.ijmachtools.2015.10.001
14. Zhou, T., He, L., Wu, J., Du, F., Zou, Z.: Prediction of surface roughness of 304 stainless steel
and multi-objective optimization of cutting parameters based on GA-GBRT. Appl. Sci. 9, (2019).
https://doi.org/10.3390/app9183684
15. Jiang, Z., Gao, D., Lu, Y., Liu, X.: Optimization of Cutting Parameters for Trade-off Among
Carbon Emissions, Surface Roughness, and Processing Time. Chinese J. Mech. Eng. (English Ed.
32, (2019). https://doi.org/10.1186/s10033-019-0408-9
16. Khaleeq, U., Khan, U.A., Aziz, S., Baqai, A.A., Butt, S.U., Hussain, D., Siadat, A., Jung, D.W.:
Optimization of Wire Electric Discharge Machining ( WEDM ) Process Parameters for AISI 1045
Medium Carbon Steel Using Taguchi Design of Experiments. (2022)
17. Pinar, A.M.: Optimization of Process Parameters with Minimum Surface Roughness in the Pocket
Machining of AA5083 Aluminum Alloy via Taguchi Method. Arab. J. Sci. Eng. 38, 705–714
(2013). https://doi.org/10.1007/s13369-012-0372-5
18. Akkuş, H.: Optimising the effect of cutting parameters on the average surface roughness in a
turning process with the Taguchi method. Mater. Tehnol. 52, 781–785 (2018).
https://doi.org/10.17222/mit.2018.110
19. Arulraj, M., Palani, P.K., Venkatesh, L.: Optimization of machining parameters in turning of
hybrid aluminium-matrix (Lm24-Sic p -coconut shell ash) composite. Mater. Tehnol. 53, 263–268
(2019). https://doi.org/10.17222/mit.2018.184
20. Tlhabadira, I., Daniyan, I.A., Masu, L., VanStaden, L.R.: Process design and optimization of
surface roughness during M200 TS milling process using the Taguchi method. Procedia CIRP. 84,
868–873 (2019). https://doi.org/10.1016/j.procir.2019.03.200
21. Vasu, M., Shivananda, N.H.: Comparative study of coated and uncoated tool inserts with dry
machining of EN47 steel using Taguchi L9 optimization technique. AIP Conf. Proc. 1943, (2018).
https://doi.org/10.1063/1.5029639
22. Das, B., Roy, S., Rai, R.N., Saha, S.C.: Development of an in-situ synthesized multi-component
reinforced Al–4.5%Cu–TiC metal matrix composite by FAS technique – Optimization of process
parameters. Eng. Sci. Technol. an Int. J. 19, 279–291 (2016).
https://doi.org/10.1016/j.jestch.2015.08.002
Performance Evaluation of Eco-friendly Cutting Fluid in Machining Process Manikanta et al.
© STM Journals 2023. All Rights Reserved S160
23. Das, B., Roy, S., Rai, R.N., Saha, S.C.: Application of grey fuzzy logic for the optimization of
CNC milling parameters for Al–4.5%Cu–TiC MMCs with multi-performance characteristics.
Eng. Sci. Technol. an Int. J. 19, 857–865 (2016). https://doi.org/10.1016/j.jestch.2015.12.002
24. Gupta, A., Singh, H., Aggarwal, A.: Taguchi-fuzzy multi output optimization (MOO) in high
speed CNC turning of AISI P-20 tool steel. Expert Syst. Appl. 38, 6822–6828 (2011).
https://doi.org/10.1016/j.eswa.2010.12.057
25. Anggoro, P.W., Purharyono, Y., Anthony, A.A., Tauviqirrahman, M., Bayuseno, A.P., Jamari:
Optimisation of cutting parameters of new material orthotic insole using a Taguchi and response
surface methodology approach. Alexandria Eng. J. 61, 3613–3632 (2022).
https://doi.org/10.1016/j.aej.2021.08.083
26. Li, C., Xiao, Q., Tang, Y., Li, L.: A method integrating Taguchi, RSM and MOPSO to CNC
machining parameters optimization for energy saving. J. Clean. Prod. 135, 263–275 (2016).
https://doi.org/10.1016/j.jclepro.2016.06.097
27. Ajith Arul Daniel, S., Pugazhenthi, R., Kumar, R., Vijayananth, S.: Multi objective prediction and
optimization of control parameters in the milling of aluminium hybrid metal matrix composites
using ANN and Taguchi -grey relational analysis. Def. Technol. 15, 545–556 (2019).
https://doi.org/10.1016/j.dt.2019.01.001
28. Thankachan, T., Soorya Prakash, K., Malini, R., Ramu, S., Sundararaj, P., Rajandran, S.,
Rammasamy, D., Jothi, S.: Prediction of surface roughness and material removal rate in wire
electrical discharge machining on aluminum based alloys/composites using Taguchi coupled Grey
Relational Analysis and Artificial Neural Networks. Appl. Surf. Sci. 472, 22–35 (2019).
https://doi.org/10.1016/j.apsusc.2018.06.117
29. Tamiloli, N., Venkatesan, J., Vijaya Ramnath, B.: A grey-fuzzy modeling for evaluating surface
roughness and material removal rate of coated end milling insert. Meas. J. Int. Meas. Confed. 84,
68–82 (2016). https://doi.org/10.1016/j.measurement.2016.02.008
30. Rapeti, P., Pasam, V.K., Rao Gurram, K.M., Revuru, R.S.: Performance evaluation of vegetable
oil based nano cutting fluids in machining using grey relational analysis-A step towards
sustainable manufacturing. J. Clean. Prod. 172, 2862–2875 (2016).
https://doi.org/10.1016/j.jclepro.2017.11.127
31. Sarikaya, M., Güllü, A.: Multi-response optimization of minimum quantity lubrication parameters
using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J.
Clean. Prod. 91, 347–357 (2015). https://doi.org/10.1016/j.jclepro.2014.12.020
32. Sarikaya, M., Güllü, A.: Taguchi design and response surface methodology based analysis of
machining parameters in CNC turning under MQL. J. Clean. Prod. 65, 604–616 (2014).
https://doi.org/10.1016/j.jclepro.2013.08.040
33. Jian, B., Wang, C., Yau, H.: Optimization of Lathe Cutting Parameters Using Taguchi Method
and Grey Relational Analysis. 32, 843–858 (2020)
34. Patole, P.B., Kulkarni, V. V: Prediction of surface roughness and cutting force under MQL
turning of AISI 4340 with nano fl uid by using response surface methodology. 5, (2018)
35. Eswara, J., Raju, B.N., Prasad, C., Sankar, B.S.S.P.: Machining performance on SS304 using
nontoxic, biodegradable vegetable-based cutting fluids. Chem. Data Collect. 42, 100961 (2022).
https://doi.org/10.1016/j.cdc.2022.100961

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””][else]Ahead of Print[/if 424] Open Access Original Research

n

n

n

n

n

Journal of Polymer and Composites

n

[if 344 not_equal=””]ISSN: 2321–2810[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424]
Received October 30, 2023
Accepted January 5, 2024
Published

n

n

n

n

n

nn function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]