CFD Analysis of Six-Flow Microchannel Heat Sink Using the Different Nanofluid

Open Access

Year : 2024 | Volume :11 | Special Issue : 11 | Page : 1-11
By

Naman Jain

Keshav Aggarwal

Gaurav Kumar

Kiran Pal

Raj Kumar Singh

  1. B. Tech Student Department of Mechanical Engineering, Delhi Technological University Delhi India
  2. B. Tech Student Department of Mechanical Engineering, Delhi Technological University Delhi India
  3. Research Scholar Department of Mechanical Engineering, Delhi Technological University Delhi India
  4. Assistant Professor Department of Mathematics, DITE DSEU Okhla Campus II, Delhi Skill & Entrepreneurship Delhi India
  5. Professor Department of Mechanical Engineering, Delhi Technological University Delhi India

Abstract

In this study, we compare the heat-conveying capabilities of ordinary water with those of cooling
fluids such as Ag-Water, TiO2-water, and Al2O3-water nanofluid at a volume percentage of 0.50%,
and we also examine the six flow micro-channels of the fin-equipped heat sink. Hardware like
microprocessors and integrated circuits are not used in the comparison. To evaluate the effectiveness
of different cooling fluids, a number of thermal metrics are used, such as temperature distribution,
convective coefficient of heat transfer, Nusselt number, and heat sink thermal resistance. In this
experiment, the ANSYS software tool Fluent (v16.0) is used. For the purpose of solving the partial
differential equations controlling the cooling fluid flow and heat transfer, the Finite Volume Method
is employed. The numerical results show that cooling all kinds of nanofluids is better than cooling the
regular fluid, due to the very high values of the Nusselt number and the convective heat transfer
coefficient. Finally, it has been determined that Ag-water nanofluid is a viable option for improving
heat transmission in general.

Keywords: Micro-Channel Heat Sink, Microprocessor Chip, CFD, Heat Transfer, Nanofluids.

[This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)]

How to cite this article: Naman Jain, Keshav Aggarwal, Gaurav Kumar, Kiran Pal, Raj Kumar Singh. CFD Analysis of Six-Flow Microchannel Heat Sink Using the Different Nanofluid. Journal of Polymer and Composites. 2024; 11(11):1-11.
How to cite this URL: Naman Jain, Keshav Aggarwal, Gaurav Kumar, Kiran Pal, Raj Kumar Singh. CFD Analysis of Six-Flow Microchannel Heat Sink Using the Different Nanofluid. Journal of Polymer and Composites. 2024; 11(11):1-11. Available from: https://journals.stmjournals.com/jopc/article=2024/view=133551

Full Text PDF Download

Browse Figures

References

  1. Kim K, Won M, Kim J, Back B. Heat pipe cooling technology for desktop PC CPU. Appl Therm Eng. 2003;23:1137 doi: 10.1016/S1359-4311(03)00044-9.
  2. Wang Y, Vafai K. An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe. Int J Heat Mass Transfer. 2000;43:2657 doi: 10.1016/S0017-9310(99)00300-2.
  3. Zhao Z, Avedisian C. Enhancing forced air convection heat transfer from an array of parallel plate fins using a heat pipe. Int J Heat Mass Transfer. 1997;40:3135 doi: 10.1016/S0017-9310(96)00348-1.
  4. Lin S, Sefiane K, Christy J. Prospects of confined flow boiling in thermal management of microsystems. Appl Therm Eng. 2002;22:825 doi: 10.1016/S1359-4311(01)00124-7.
  5. Honda H, Wei J. Enhanced boiling heat transfer from electronic components by use of surface microstructure. Exp Therm Fluid Sci. 2001;28:159 doi: 10.1016/S0894-1777(03)00035-9.
  6. Arik M, Bar-Cohen A. Pool boiling of perfluorocarbon mixtures on silicon surfaces. Int J Heat Mass Transfer. 2010;53:5596 doi: 10.1016/j.ijheatmasstransfer.2010.06.034.
  7. Das S, Choi S, Patel H. Heat transfer in nanofluids – a review. Heat Transfer Eng. 2006;27:3 doi: 10.1080/01457630600904593.
  8. Choi S, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles. Journal of heat transfer. 1995.
  9. Duangthongsuk W, Wongwises S. An experimental study on the thermal and hydraulic performances of nanofluids flow in a miniature circular pin fin heat sink. Exp Thermal Fluid Sci. 2015;66:28 doi: 10.1016/j.expthermflusci.2015.02.008.
  10. Ijam A, Saidur R. Nanofluid as a coolant for electronic devices (cooling of electronic devices). Appl Therm Eng. 2012;32:76 doi: 10.1016/j.applthermaleng.2011.08.032.
  11. Ijam A, Saidur R, Ganesan P. Cooling of minichannel heat sink using nanofluids. Int Commun Heat Mass Transfer. 2012;39:1188 doi: 10.1016/j.icheatmasstransfer.2012.06.022.
  12. Ghasemi SE, Ranjbar A, Hosseini M. Numerical study on effect of CuO-water nanofluid on cooling performance of two different cross-sectional heat sinks. Adv Powder Technol. 2017;28:1495 doi: 10.1016/j.apt.2017.03.019.
  13. Chamkha A, Molana M, Rahnama A, Ghadami F. On the nanofluids applications in microchannels: a comprehensive review. Powder Technol. 2018;332:287-322. doi: 10.1016/j.powtec.2018.03.044.
  14. Bhattacharya P, Samanta A, Chakraborty S. Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid. Heat mass transfer. 2009;45:1323 doi: 10.1007/s00231-009-0510-0.
  15. Ghasemi SE, Ranjbar A, Hosseini M. Thermal and hydrodynamic characteristics of water-based suspensions of Al2O3 nanoparticles in a novel minichannel heat sink. J Mol Liq. 2017;230:550 doi: 10.1016/j.molliq.2017.01.070.
  16. Ghasemi S, Ranjbar A, Hosseini M. Experimental and numerical investigation of circular minichannel heat sinks with various hydraulic diameter for electronic cooling application. Microelectron Reliab. 2017;73:97 doi: 10.1016/j.microrel.2017.04.028.
  17. Kumar PM, Kumar CA. Numerical study on heat transfer performance using Al2O3/water nanofluids in six circular channel heat sink for electronic chip. Materials today:proceedings. 2019;21:194 doi: 10.1016/j.matpr.2019.04.220.
  18. Jang S, Choi S. Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng. 2006;26:2457 doi: 10.1016/j.applthermaleng.2006.02.036.
  19. Nebbati R, Kadja M. Study of forced convection of a nanofluid used as a heat carrier in a microchannel heat sink. Energy Procedia. 2015;74:633-642. doi: 10.1016/j.egypro.2015.07.799.
  20. Seyed GE, Ali RA. Thermal efficiency evaluation of solar rings in tubes. Eur Phys J. 2016;131:1 doi: 10.1140/epjp/i2016-16430-x.
  21. Ghasemi SE, Ali RA. Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector. Appl Therm Eng. 2017;118:807 doi: 10.1016/j.applthermaleng.2017.03.021.
  22. Mohammed H, Gunnasegaran P. The impact of various nanofluid types on triangular microchannels heat sink cooling performance. Int Commun Heat Mass Transfer. 2011;38:767 doi: 10.1016/j.icheatmasstransfer.2011.03.024.
  23. Al-Rashed MH, Dzido G, Korpys M, Smolka J, Wojcik J. Investigation on the CPU nanofluid cooling. Microelectron Reliab. 2016;63:159 doi: 10.1016/j.microrel.2016.06.016.
  24. Maganti L, Dhar P, Sundararajan T, Das SK. Heat spreader with parallel microchannel configurations employing nanofluids for near-active cooling of MEMS. Int J Heat Mass Transfer. 2017;111:570581. doi: 10.1016/j.ijheatmasstransfer.2017.04.032.

Special Issue Open Access Original Research
Volume 11
Special Issue 11
Received December 6, 2023
Accepted January 5, 2024
Published February 23, 2024