CFD Analysis of Six-Flow Microchannel Heat Sink Using the Different Nanofluid

[{“box”:0,”content”:”[if 992 equals=”Open Access”]

n

Open Access

n

[/if 992]n

n

Year : February 23, 2024 | Volume : 11 | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : 11 | Page : 1-11

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Naman Jain, Keshav Aggarwal, Gaurav Kumar, Kiran Pal, Raj Kumar Singh

  1. [/foreach]

    n

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. B. Tech Student, B. Tech Student, Research Scholar, Assistant Professor, Professor, Department of Mechanical Engineering, Delhi Technological University, Department of Mechanical Engineering, Delhi Technological University, Department of Mechanical Engineering, Delhi Technological University, Department of Mathematics, DITE DSEU Okhla Campus II, Delhi Skill & Entrepreneurship, Department of Mechanical Engineering, Delhi Technological University, Delhi, Delhi, Delhi, Delhi, Delhi, India, India, India, India, India
  2. n[/if 1175][/foreach]

[/if 2099][if 2099 equals=”Yes”][/if 2099]nn

n

Abstract

nIn this study, we compare the heat-conveying capabilities of ordinary water with those of cooling
fluids such as Ag-Water, TiO2-water, and Al2O3-water nanofluid at a volume percentage of 0.50%,
and we also examine the six flow micro-channels of the fin-equipped heat sink. Hardware like
microprocessors and integrated circuits are not used in the comparison. To evaluate the effectiveness
of different cooling fluids, a number of thermal metrics are used, such as temperature distribution,
convective coefficient of heat transfer, Nusselt number, and heat sink thermal resistance. In this
experiment, the ANSYS software tool Fluent (v16.0) is used. For the purpose of solving the partial
differential equations controlling the cooling fluid flow and heat transfer, the Finite Volume Method
is employed. The numerical results show that cooling all kinds of nanofluids is better than cooling the
regular fluid, due to the very high values of the Nusselt number and the convective heat transfer
coefficient. Finally, it has been determined that Ag-water nanofluid is a viable option for improving
heat transmission in general.

n

n

n

Keywords: Micro-Channel Heat Sink, Microprocessor Chip, CFD, Heat Transfer, Nanofluids.

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Polymer and Composites(jopc)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Naman Jain, Keshav Aggarwal, Gaurav Kumar, Kiran Pal, Raj Kumar Singh CFD Analysis of Six-Flow Microchannel Heat Sink Using the Different Nanofluid jopc February 23, 2024; 11:1-11

n

How to cite this URL: Naman Jain, Keshav Aggarwal, Gaurav Kumar, Kiran Pal, Raj Kumar Singh CFD Analysis of Six-Flow Microchannel Heat Sink Using the Different Nanofluid jopc February 23, 2024 {cited February 23, 2024};11:1-11. Available from: https://journals.stmjournals.com/jopc/article=February 23, 2024/view=0

nn


nn[if 992 equals=”Open Access”] Full Text PDF Download[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘Full Text PDF‘);n }nelse if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }nelse if (fieldValue == ‘jopc’) { document.write(‘Full Text PDF‘); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Kim K, Won M, Kim J, Back B. Heat pipe cooling technology for desktop PC CPU. Appl Therm Eng. 2003;23:1137 doi: 10.1016/S1359-4311(03)00044-9.
  2. Wang Y, Vafai K. An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe. Int J Heat Mass Transfer. 2000;43:2657 doi: 10.1016/S0017-9310(99)00300-2.
  3. Zhao Z, Avedisian C. Enhancing forced air convection heat transfer from an array of parallel plate fins using a heat pipe. Int J Heat Mass Transfer. 1997;40:3135 doi: 10.1016/S0017-9310(96)00348-1.
  4. Lin S, Sefiane K, Christy J. Prospects of confined flow boiling in thermal management of microsystems. Appl Therm Eng. 2002;22:825 doi: 10.1016/S1359-4311(01)00124-7.
  5. Honda H, Wei J. Enhanced boiling heat transfer from electronic components by use of surface microstructure. Exp Therm Fluid Sci. 2001;28:159 doi: 10.1016/S0894-1777(03)00035-9.
  6. Arik M, Bar-Cohen A. Pool boiling of perfluorocarbon mixtures on silicon surfaces. Int J Heat Mass Transfer. 2010;53:5596 doi: 10.1016/j.ijheatmasstransfer.2010.06.034.
  7. Das S, Choi S, Patel H. Heat transfer in nanofluids – a review. Heat Transfer Eng. 2006;27:3 doi: 10.1080/01457630600904593.
  8. Choi S, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles. Journal of heat transfer. 1995.
  9. Duangthongsuk W, Wongwises S. An experimental study on the thermal and hydraulic performances of nanofluids flow in a miniature circular pin fin heat sink. Exp Thermal Fluid Sci. 2015;66:28 doi: 10.1016/j.expthermflusci.2015.02.008.
  10. Ijam A, Saidur R. Nanofluid as a coolant for electronic devices (cooling of electronic devices). Appl Therm Eng. 2012;32:76 doi: 10.1016/j.applthermaleng.2011.08.032.
  11. Ijam A, Saidur R, Ganesan P. Cooling of minichannel heat sink using nanofluids. Int Commun Heat Mass Transfer. 2012;39:1188 doi: 10.1016/j.icheatmasstransfer.2012.06.022.
  12. Ghasemi SE, Ranjbar A, Hosseini M. Numerical study on effect of CuO-water nanofluid on cooling performance of two different cross-sectional heat sinks. Adv Powder Technol. 2017;28:1495 doi: 10.1016/j.apt.2017.03.019.
  13. Chamkha A, Molana M, Rahnama A, Ghadami F. On the nanofluids applications in microchannels: a comprehensive review. Powder Technol. 2018;332:287-322. doi: 10.1016/j.powtec.2018.03.044.
  14. Bhattacharya P, Samanta A, Chakraborty S. Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid. Heat mass transfer. 2009;45:1323 doi: 10.1007/s00231-009-0510-0.
  15. Ghasemi SE, Ranjbar A, Hosseini M. Thermal and hydrodynamic characteristics of water-based suspensions of Al2O3 nanoparticles in a novel minichannel heat sink. J Mol Liq. 2017;230:550 doi: 10.1016/j.molliq.2017.01.070.
  16. Ghasemi S, Ranjbar A, Hosseini M. Experimental and numerical investigation of circular minichannel heat sinks with various hydraulic diameter for electronic cooling application. Microelectron Reliab. 2017;73:97 doi: 10.1016/j.microrel.2017.04.028.
  17. Kumar PM, Kumar CA. Numerical study on heat transfer performance using Al2O3/water nanofluids in six circular channel heat sink for electronic chip. Materials today:proceedings. 2019;21:194 doi: 10.1016/j.matpr.2019.04.220.
  18. Jang S, Choi S. Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng. 2006;26:2457 doi: 10.1016/j.applthermaleng.2006.02.036.
  19. Nebbati R, Kadja M. Study of forced convection of a nanofluid used as a heat carrier in a microchannel heat sink. Energy Procedia. 2015;74:633-642. doi: 10.1016/j.egypro.2015.07.799.
  20. Seyed GE, Ali RA. Thermal efficiency evaluation of solar rings in tubes. Eur Phys J. 2016;131:1 doi: 10.1140/epjp/i2016-16430-x.
  21. Ghasemi SE, Ali RA. Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector. Appl Therm Eng. 2017;118:807 doi: 10.1016/j.applthermaleng.2017.03.021.
  22. Mohammed H, Gunnasegaran P. The impact of various nanofluid types on triangular microchannels heat sink cooling performance. Int Commun Heat Mass Transfer. 2011;38:767 doi: 10.1016/j.icheatmasstransfer.2011.03.024.
  23. Al-Rashed MH, Dzido G, Korpys M, Smolka J, Wojcik J. Investigation on the CPU nanofluid cooling. Microelectron Reliab. 2016;63:159 doi: 10.1016/j.microrel.2016.06.016.
  24. Maganti L, Dhar P, Sundararajan T, Das SK. Heat spreader with parallel microchannel configurations employing nanofluids for near-active cooling of MEMS. Int J Heat Mass Transfer. 2017;111:570581. doi: 10.1016/j.ijheatmasstransfer.2017.04.032.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

Special Issue Open Access Original Research

n

n

n

n

n

Journal of Polymer and Composites

n

[if 344 not_equal=””]ISSN: 2321–2810[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 11
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] 11
Received December 6, 2023
Accepted January 5, 2024
Published February 23, 2024

n

n

n

n

n

nn function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]