Optimum Machining Parameters for Al 7075 Hybrid Metal Matrix Composites Using Multi-objective Optimization Technique and the Modified Taguchi Approach

Open Access

Year : 2024 | Volume :11 | Special Issue : 08 | Page : 269-278
By

    Harish Mugutkar

  1. T. Vijaya Kumar

  2. G. Murali

  3. Nageswara Rao Boggarapu

1.1 Research Scholar, Department of Mechanical Engineering,Koneru Lakshmaiah Education Foundation, Green Fields,Vaddeswaram, Guntur, Andhra Pradesh, India

1.2 Assistant Professor, Department of Mechanical Engineering,Anurag University, Ghatkesar, Hyderabad, Telangana, India

2.1 Associate Professor, Department of Mechanical Engineering,Koneru Lakshmaiah Education Foundation, Green Fields,Vaddeswaram, Guntur, Andhra Pradesh, India

3.1 Professor, Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields,Vaddeswaram, Guntur, Andhra Pradesh, India

4.1 Professor, Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields,Vaddeswaram, Guntur, Andhra Pradesh, India

Abstract

Lightweight composite materials with improved mechanical properties are widely used in industries. There is a need to obtain optimum machining parameters of such hybrid composites. This paper uses reliable multi-objective optimization technique and modified Taguchi approach to determine optimal machining parameters such as speed (NS) varying from 1000 rpm to 1500 rpm, feed rate (FR) from 0.10 mm/rev to 0.20 mm/rev, depth-of-cut (DC) varied from 0.5 mm to 1.5 mm and percentage reinforcement (R%) varied from 2 to 6 to achieve maximum material removal rate (MRR) and minimum surface roughness (SR) of the hybrid composites. The hybrid metal matrix composite (i.e., Al 7075 reinforced with B4C and rice husk ash, RHA) is manufactured using a stir casting technique. A set of optimum machining parameters is found to be NS = 1500 rpm, FR = 0.1 mm/rev, DC = 1.5 mm and R% = 2. Empirical relationship for MRR and SR are developed in terms of the machining

Keywords: Depth-of-cut, Feed rate, Material removal rate, % reinforcement, Rice husk ash, Speed, Surface roughness, Turning operation

This article belongs to Special Issue Conference International Conference on Innovative Concepts in Mechanical Engineering (ICICME – 2023)

How to cite this article: Harish Mugutkar, T. Vijaya Kumar, G. Murali, Nageswara Rao Boggarapu , Optimum Machining Parameters for Al 7075 Hybrid Metal Matrix Composites Using Multi-objective Optimization Technique and the Modified Taguchi Approach jopc 2024; 11:269-278
How to cite this URL: Harish Mugutkar, T. Vijaya Kumar, G. Murali, Nageswara Rao Boggarapu , Optimum Machining Parameters for Al 7075 Hybrid Metal Matrix Composites Using Multi-objective Optimization Technique and the Modified Taguchi Approach jopc 2024 {cited 2024 Feb 16};11:269-278. Available from: https://journals.stmjournals.com/jopc/article=2024/view=133078

Full Text PDF Download

Browse Figures

References

  1. Padmakumar A.B., Vinayak R.M., Anand S.D. (2019). Particulate metal matrix composites and their fabrication via friction stir processing – a review, Materials and Manufacturing Processes, 34:8, 833-881, DOI: 10.1080/10426914.2019.1605181
  2. Bahrami, A., Soltani, N., Soltani, S., Pech-Canul, M.I., Gonzalez, L.A., Gutierrez, C.A., Möller, A., Tapp, J., Gurlo, A. (2017). Mechanical, thermal and electrical properties of monolayer and bilayer graded Al/SiC/rice husk ash (RHA) composite, Journal of Alloys and Compounds, 699, 308-322, doi: 10.1016/j.jallcom.2016.12.339.
  3. Mugutkar, H., Tamiloli, N., Kohir, V.V. (2019). The processing techniques and behaviour of aluminum metal matrix with different reinforcement materials, International Journal of Mechanical and Production Engineering Research and Development, 9:4, 793-804.
  4. Shalok, B., Nilesh, D.G., Kaushik, M.P. (2020). A review on manufacturing the surface composites by friction stir processing, Materials and Manufacturing Processes, 36:2,135-170,DOI: 1080/10426914.2020.1813897
  5. Gopal, P.M., Prakash, K.S., Jayaraj, S. (2018). WEDM of Mg/CRT/BN composites: effect of materials and machining parameters, Materials and Manufacturing Processes, 33:1, 77-84, DOI: 1080/10426914.2017.1279316
  6. Prakash, K.S., Kanagaraj, A., Gopal, P.M. (2015). Dry sliding wear characterization of Al 6061/rock dust composite, Transactions of Nonferrous Metals Society of China, 25:12, 3893–3903. https://doi.org/10.1016/S1003-6326(15)64036-5
  7. Kumar, H., Prasad, R., Kumar, P., Tiwari, S.P., Singh, J.K. (2020). Mechanical and tribological characterization of industrial wastes reinforced aluminum alloy composites fabricated via friction stir processing. Journal of Alloys and Compounds, 831:154832. http://dx.doi.org/10.1016/j.jallcom.2020.154832
  8. Hossain, S.K.S., Roy, P.K. (2020). Waste rice husk ash derived sol: A potential binder in high alumina refractory castables as a replacement of hydraulic binder. Journal of Alloys and Compounds, 817:152806. http://dx.doi.org/10.1016/j.jallcom.2019.152806
  9. Bahrami, A., Pech-Canul, M.I., Gutierrez, C.A., Soltani, N. (2015). Effect of rice-husk ash on properties of laminated and functionally graded Al/SiC composites by one-step pressureless infiltration. Journal of Alloys and Compounds 644:256-266. https://doi.org/10.1016/j.jallcom.2015.04.194
  10. Deng, M., Zhang, G., Zeng, Y., Pei, X., Huang, R., Lin, J. (2016). Simple process for synthesis of layered sodium silicates using rice husk ash as silica source. Journal of Alloys and Compounds 683:412-417 https://doi.org/10.1016/j.jallcom.2016.05.115
  11. Mugutkar, H., Tamiloli, N., Kohir, V.V. (2022). Comparative analysis of mechanical studies of Al7075 hybrid metal matrix composites as a functionality of Sio2% in RHA. Academic Journal of Manufacturing Engineering 20:2, 19-26.
  12. Taskesen, A., Kutukde, K. (2014). Experimental investigation and multi objective analysis on drilling of boron carbide reinforced metal matrix composites using grey relational analysis. Measurement 47: 321–330, http://dx.doi.org/10.1016/j.measurement.2013.08.040.
  13. Abhang, L.B., Hameedullah, M. (2012). Determination of optimum parameters for multi-performance characteristics in turning by using grey relational analysis. Int J Adv Manuf Technol 63:1, 13–24, http://dx.doi.org/10.1007/ s00170-011-3857-6.
  14. Shi, K., Zhang, D., Ren, J. (2015). Optimization of process parameters for surface roughness and microhardness in dry milling of magnesium alloy using Taguchi with grey relational analysis, Int. J. Adv. Manuf. Technol. 81, 645–651. https://doi.org/10.1007/s00170-015-7218-8
  15. Ghetiya, N.D., Patel, K.M., Kavar, A.J. (2016). Multi-objective optimization of FSW process parameters of aluminium alloy using Taguchi-based grey relational analysis. Trans Indian Inst Met 69, 917–923. https://doi.org/10.1007/s12666-015-0581-1
  16. Nataraj, M., Balasubramanian, K. (2017). Parametric optimization of CNC turning process for hybrid metal matrix composite. Int J Adv Manuf Technol 93, 215–224. https://doi.org/10.1007/s00170-016-8780-4
  17. Mia, M., Khan, M.A., Rahman, S.S., Dhar, N.R. (2017). Mono-objective and multi-objective optimization of performance parameters in high pressure coolant assisted turning of Ti-6Al-4V. Int J Adv Manuf Technol 90, 109–118. https://doi.org/10.1007/s00170-016-9372-z
  18. Ross, P.J. (1989). Taguchi Techniques for Quality Engineering. McGraw- Hill, Singapore.
  19. Singaravelu J, Jeyakumar D, Nageswara Rao B. (2012). Reliability and Safety Assessments of the Satellite Separation Process of a Typical Launch Vehicle. The Journal of Defense Modeling and Simulation 9:4, 369-382. doi:1177/1548512911401939
  20. Koneru, S., Srinath, A., Nageswara Rao, B. (2022). Multiobjective optimization for the optimal heat pipe working parameters based on Taguchi’s design of experiments. Heat Transf. 51:3, 2510-2523. https://doi.org/10.1002/htj.22410.
  21. Sanjeevannavar, M.B., Banapurmath, N.R., Soudagar, M.E.M., Atgur, V., Hossain, N., Mujtaba, M.A., Yunus Khan, T.M., Nageswar Rao, B., Ismail, K.A., Elfasakhany, A. (2022). Performance indicators for the optimal BTE of biodiesels with additives through engine testing by the Taguchi approach. Chemosphere 288: 132450. https://doi.org/10.1016/j.chemosphere.2021.132450.
  22. Satyanarayana, G., Narayana, K.L. & Nageswara Rao, B. (2018).Identification of optimum laser beam welding process parameters for E110 zirconium alloy butt joint based on Taguchi-CFD simulations. Lasers Manuf. Mater. Process. 5, 182–199. https://doi.org/10.1007/s40516-018-0061-7
  23. Rajyalakshmi, K., Nageswara Rao, B. (2019). Modified Taguchi approach to trace the optimum GMAW process parameters on weld dilution for ST-37 steel plates. ASTM Int. J. Test. Eval. 47(4), 3209–3223. DOI: 1520/JTE20180617
  24. Satyanarayana, G., Narayana, K.L., Nageswara Rao, B. (2021). Incorporation of Taguchi approach with CFD simulations on laser welding of spacer grid fuel rod assembly. Mater. Sci. Eng. B 269:115182 (2021). https://doi.org/10.1016/j.mseb.2021.115182
  25. Satyanarayana, G., Narayana, K.L., Nageswara Rao, B. (2019). Optimal laser welding process parameters and expected weld bead profile for P92 steel. SN Appl. Sci. 1:1291. https://doi.org/10.1007/s42452-019-1333-3.
  26. Dharmendra, B.V., Kodali, S.P., Nageswara Rao, B.: A simple and reliable Taguchi approach for multi-objective optimization to identify optimal process parameters in nano-powder-mixed electrical discharge machining of INCONEL800 with copper electrode. HELIYON 5, e02326 (2019). https://doi.org/10.1016/j.heliyon.2019.e02326.
  27. Dharmendra, B.V., Kodali, S.P., Nageswara Rao, B. (2020). Multi objective optimization for optimum abrasive water jet machining process parameters of Inconel718 adopting the Taguchi approach. Multidiscip. Model. Mater. Struct. 16:2, 306–321. https://doi.org/10.1108/MMMS-10-2018-0175
  28. Sastry, K.S.S., Kumar, K.V.D.S.R.M., Priyanka, M., Ram, M.R., Nageswara Rao, B. (2017). Application of Taguchi approach to seek optimum drilling parameters for woven fabric carbon fibre/epoxy laminates. MAYFEB J. Mech. Eng. 1, 29–37.
  29. Rajyalakshmi, K., Nageswara Rao, B. (2019). Expected range of the output response for the optimum input parameters utilizing the modified Taguchi approach. Multidiscip. Model. Mater. Struct. 15:2, 508–522. https://doi.org/10.1108/MMMS-05-2018-0088
  30. Buddi, T., Singh, S.K., Nageswara Rao, B. (2018). Optimum process parameters for plywood manufacturing using soya meal adhesive. Mater. Today Proc. 5, 18739–18744. https://doi.org/10.1016/j.matpr.2018.06.220
  31. Danthala, S., Srinivasa Rao, S., Nageswara Rao, B., Mannepalli, K.(2021). Multi-objective optimization with modified Taguchi approach to specify optimal robot spray painting process parameters. Int. J. Nonlinear Anal. Appl. (IJNAA) 12:2, 1163-1174. https://doi.org/10.22075/ijnaa.2021.5193.
  32. Miladinovic, S., Velickovic, S., Loknath, D., Karthik, K., Nageswara Rao, B. (2020). Parameters identification and minimization of safety coefficient for surface durability of internal planetary gear using the modified Taguchi approach. TEST Eng. Manag. 83, 25108–25116.
  33. Prakash, K.S., Gopal, P.M., Karthik, S. (2020). Multi-objective optimization using Taguchi based grey relational analysis in turning of rock dust reinforced aluminum MMC. Measurement 157:107664. https://doi.org/10.1016/j.measurement.2020.107664
  34. Mohamed, M.A., Manurung, Y.H., Berhan, M.N. (2015). Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology. J. Mech. Sci. Technol. 29:6, 2323–2331. https://doi.org/10.1007/s12206-015-0527-x
  35. Muni Tanuja, A., Kumar, A., Nageswara Rao, B. (2022). Review on the Application of CGP to Improve AZ31 Mg Alloy Properties. In: Deepak, B.B.V.L., Parhi, D., Biswal, B., Jena, P.C. (eds) Applications of Computational Methods in Manufacturing and Product Design. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-0296-3_21
  36. Muni Tanuja, A., Tanya, B., Nageswara Rao, B. (2023). Multi-objective optimization basing modified Taguchi method to arrive the optimal die design for CGP of AZ31 magnesium alloy, International Journal on Interactive Design and Manufacturing (IJIDeM), Springer Nature. https://doi.org/10.1007/s12008-022-01176-6
  37. Muni Tanuja, A., Tanya,, Nageswara Rao,B.(2023).Utilisation of fuzzy logic and genetic algorithm to seek optimal corrugated die design for CGP of AZ31 magnesium alloy,Advances in Materials and Processing Technologies,DOI: 10.1080/2374068X.2023.2192135
  38. Dharmendra, B.V., Kodali, S.P.; Nageswara Rao, B. (2020).  Multi-objective optimization for optimum abrasive water jet machining process parameters of Inconel718 adopting the Taguchi approach. Multidiscipline Modeling in Materials and Structures, 16:2, 306-321. DOI:10.1108/MMMS-10-2018-0175
  39. Prakash, K.S., Gopal, P., Karthik, S. (2020). Multi-objective optimization using Taguchi based grey relational analysis in turning of rock dust reinforced aluminum MMC. Measurement, 157:107664. https://doi.org/10.1016/j.measurement.2020.107664

Conference Open Access Original Research
Volume 11
Special Issue 08
Received October 19, 2023
Accepted October 30, 2023
Published February 16, 2024