Hybrid Supercapacitor Application for Future E-mobility

Year : 2022 | Volume : | Issue : 1 | Page : 50-64

    Amit Pal

  1. Manish Mishra

  2. Amrish K. Panwar

  1. Research Scholar, Department of Mechanical Engineering, Delhi Technological University, Delhi, India
  2. Professor, Mechanical Engineering, Delhi Technological University, Delhi, India
  3. Assistant Professor, Department of Applied Physics, Delhi Technological University, Delhi, India


With the rise in demand for automobiles, there is an increase in pollution levels and global warming since the past decade, there is a strong need for an alternative mode of commuting like Electric vehicles against conventional gasoline/diesel-powered vehicles to safeguard the planet and its flora and fauna. Battery technology like lithium-ion and others has already revolutionized the automotive world, but there is a limitation of fast charging, operating temperature range, and low cycle life due
to degradation in the battery because of chemical reactions associated with each charge and discharge cycle. This aging or degradation minimizes operating life, slow charge/discharge process due to electrochemical reactions involved, low safety rating, usage of rare earth elements like cobalt,
nickel, and lithium, etc. contributed to the extraordinary cost of LIBs system. These factors are major challenges that are hindering electric vehicle acceptance widely. Against other energy storage devices, supercapacitors and BSHs can be the potential alternatives in the domain of energy storage systems for future mobility which can address all the battery concerns. However, low specific energy is the prime concern that is required to optimize to maximize the higher range of EVs. This paper deals with types of supercapacitors and battery-type super hybrid capacitors (BSHs), it’s working, along with factors influencing specific energy of supercapacitor/BSHs by improving specific capacitance and their operating voltage, also the adoption of alternate biodegradable, abundant materials for bringing down the cost of BSHs. The main goal of the study is to present BSHs as the
best alternative for future mobility, having the best of LIBs and supercapacitor benefits, also brief information about the scope for the usage of alternate materials for electrodes and electrolytes for offsetting the higher cost of raw materials like lithium, graphene, etc.

Keywords: Specific energy, specific capacitance, operating voltage, BSHs, LIBs

This article belongs to Conference RAMMTE-2022: Recent Advances in Materials, Manufacturing and Thermal Engineering

How to cite this article: Amit Pal, Manish Mishra, Amrish K. Panwar Hybrid Supercapacitor Application for Future E-mobility jopc 2022; 10:50-64
How to cite this URL: Amit Pal, Manish Mishra, Amrish K. Panwar Hybrid Supercapacitor Application for Future E-mobility jopc 2022 {cited 2022 Nov 30};10:50-64. Available from: https://journals.stmjournals.com/jopc/article=2022/view=96789/

Full Text

Browse Figures


1. Armand M, Tarascon JM. Building better batteries. Nature. 2008; 451(7179): 652–7. doi: 10.1038/451652a.
2. Miller JR, Simon P. Materials science. Electrochemical capacitors for energy management. Science. 2008; 321(5889): 651–2. doi: 10.1126/science.1158736.
3. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, et al. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015; 347(6217): 1246501. doi: 10.1126/science.1246501.
4. Li W, Zeng L, Wu Y, Yu Y. Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Sci China Mater. 2016; 59(4): 287–321. doi: 10.1007/s40843–016–5039–6.
5. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012; 41(2): 797–828. doi: 10.1039/c1cs15060j.
6. Wang B. Supercapacitors Game Changing Improvement on Energy Density Compared to Batteries; 2017. Available from: http://www.nextbigfuture.com.
7. Keenan M. Avnet Abacus: Hybrid capacitors combine the best of both worlds, Power Electronics/Power Management 2020.
8. Yan J, Wang Q, Wei T, Fan Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater. 2014; 4(4): 1300816. doi: 10.1002/aenm.201300816.
9. Wu S, Zhu Y. Highly densified carbon electrode materials towards practical supercapacitor devices. Sci China Mater. 2017; 60(1): 25–38. doi: 10.1007/s40843–016–5109–4.
10. Conway BE. Electrochemical supercapacitors: scientific fundamentals and technological applications. New York: Kluwer Publishers-Plenum; 1999.
11. Conway BE. Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. J Electrochem Soc. 1991;138(6):1539–48. doi: 10.1149/1.2085829.
12. Conway BE, Birss V, et al. The role and utilization of pseudo capacitance for energy storage by supercapacitors. J Power Sources. 1997; 66(1–2): 1–14.
13. Kim IH, Kim KB. Ruthenium oxide thin film electrodes for supercapacitors. Electrochem Solid State Lett. 2001; 4(5): A62–4. doi: 10.1149/1.1359956.
14. Mastragostino MC Arbizzani, et al.: Polymer-based supercapacitors. J Power Sources. 2001:97–8, 812–5.
15. Ryu KS, Kim KM, Park N, Park YJ, Chang SH. Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sources. 2002; 103(2): 305–9. doi: 10.1016/S0378-7753(01)00862-X.
16. Béguin F, Presser V, Balducci A, Frackowiak E. Carbons and electrolytes for advanced supercapacitors. Adv Mater. 2014; 26(14): 2219–51. doi: 10.1002/adma.201304137.
17. Hao L, Li X, Zhi L. Carbonaceous electrode materials for supercapacitors. Adv Mater. 2013; 25(28): 3899–904. doi: 10.1002/adma.201301204.
18. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P. Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc. 2008; 130(9): 2730–1. doi: 10.1021/ja7106178.
19. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7(11):845–54. doi: 10.1038/nmat2297.
20. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011; 332(6037): 1537–41. doi: 10.1126/science.1200770.
21. Hou J, Cao T, Idrees F, Cao C. A co-sol-emulsion-gel synthesis of tunable and uniform hollow carbon nanospheres with interconnected mesoporous shells. Nanoscale. 2016; 8(1): 451–7. doi: 10.1039/c5nr06279a.
22. Xu J, Tan Z, Zeng W, Chen G, Wu S, Zhao Y, et al. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv Mater. 2016; 28(26): 5222–8. doi: 10.1002/adma.201600586.
23. Kim TY, Jung G, Yoo S, Suh KS, Ruoff RS. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano. 2013; 7(8): 6899–905. doi: 10.1021/nn402077v.
24. Sevilla M, Fuertes AB. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano. 2014; 8(5): 5069–78. doi: 10.1021/nn501124h.
25. Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano. 2013; 7(6): 5131–41. doi: 10.1021/nn400731g.
26. Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, et al. Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun. 2014; 5: 4554. doi: 10.1038/ncomms5554.
27. Li Y, Li Z, Shen PK. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater. 2013; 25(17): 2474–80. doi: 10.1002/adma.201205332.
28. Lin T, Chen IW, Liu F, Yang C, Bi H, Xu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science. 2015;350(6267):1508–13. doi: 10.1126/science.aab3798.
29. Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen P, et al. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano. 2012; 6(8): 7092–102. doi: 10.1021/nn302147s.
30. Xia W, Qu C, Liang Z, Zhao B, Dai S, Qiu B, et al. High-performance energy storage and conversion materials derived from a single metal–organic framework/graphene aerogel composite. Nano Lett. 2017;17(5):2788–95. doi: 10.1021/acs.nanolett.6b05004.
31. Zhang W, Xu C, Ma C, Li G, Wang Y, Zhang K, et al. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv Mater. 2017; 29(36): 1701677. doi: 10.1002/adma.201701677.
32. Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci. 2013; 6(8): 2497. doi: 10.1039/c3ee41638k.
33. Zhong M, Kim EK, McGann JP, Chun SE, Whitacre JF, Jaroniec M, et al. Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. J Am Chem Soc. 2012; 134(36): 14846–57. doi: 10.1021/ja304352n.
34. Guo DC, Mi J, Hao GP, Dong W, Xiong G, Li W, et al. Ionic liquid C 16 mimBF 4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy Environ Sci. 2013; 6(2): 652–9. doi: 10.1039/C2EE23127A.
35. Hou J, Cao C, Idrees F, Ma X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano. 2015; 9(3): 2556–64. doi: 10.1021/nn506394r.
36. Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, et al. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci. 2014; 7(1): 379–86. doi: 10.1039/C3EE43111H.
37. Hou J, Cao C, Ma X, Idrees F, Xu B, Hao X, et al. From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon. Sci Rep. 2014;4:7260. doi: 10.1038/srep07260.
38. Zhu J, Shan Y, Wang T, Sun H, Zhao Z, Mei L, et al. A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat Commun. 2016; 7: 13432. doi: 10.1038/ncomms13432.
39. Kang D, Liu Q, Gu J, Su Y, Zhang W, Zhang D. “Egg-Box”-Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors. ACS Nano. 2015; 9(11): 11225–33. doi: 10.1021/acsnano.5b04821.
40. Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, et al. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci. 2017; 10(2): 538–45. doi: 10.1039/C6EE03716J.
41. Biswal M, Banerjee A, Deo M, Ogale S. From dead leaves to high energy density supercapacitors. Energy Environ Sci. 2013; 6(4): 1249. doi: 10.1039/c3ee22325f.
42. Zhao Y, Liu J, Horn M, Motta N, Hu M, Li Y. Recent advancements in metal organic framework-based electrodes for supercapacitors. Sci China Mater. 2018; 61(2): 159–84. doi: 10.1007/s40843–017–9153-x.
43. Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dincă M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater. 2017; 16(2): 220–4. doi: 10.1038/nmat4766.
44. Hou J, Jiang K, Tahir M, Wu X, Idrees F, Shen M, et al. Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors. J Power Sources. 2017; 371: 148–55. doi: 10.1016/j.jpowsour.2017.10.045.
45. Wu Y, Cao Chuanbao. The way to improve the energy density of supercapacitors: progress and perspective. Sci China Mater. 2018/06/27; 61(12): 1517–26. doi: 10.1007/s40843-018-9290-y.
46. Hou J, Jiang K, Wei R, Tahir M, Wu X, Shen M, et al. Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors. ACS Appl Mater Interfaces. 2017; 9(36): 30626–34. doi: 10.1021/acsami.7b07746.
47. Khalid S, Cao C, Wang L, Zhu Y. Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci Rep. 2016;6:22699. doi: 10.1038/srep22699.
48. Mahmood N, Tahir M, Mahmood A, Zhu J, Cao C, Hou Y. Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density. Nano Energy. 2015; 11: 267–76. doi: 10.1016/j.nanoen.2014.11.015.
49. Ali Z, Tahir M, Cao C, Mahmood A, Mahmood N, Butt FK, et al. Solid waste for energy storage material as electrode of supercapacitors. Mater Lett. 2016; 181: 191–5. doi: 10.1016/j.matlet.2016.05.159.
50. Salunkhe RR, Kaneti YV, Yamauchi Y. Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano. 2017; 11(6): 5293–308. doi: 10.1021/acsnano.7b02796.
51. Idrees F, Hou J, Cao C, Butt FK, Shakir I, Tahir M, et al. Template-free synthesis of highly ordered 3D-hollow hierarchical Nb 2 O 5 superstructures as an asymmetric supercapacitor by using inorganic electrolyte. Electrochim Acta. 2016; 216: 332–8. doi: 10.1016/j.electacta.2016.09.031.
52. Zhang X, Zhang H, Lin Z, Yu M, Lu X, Tong Y. Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci China Mater. 2016; 59(6): 475–94. doi: 10.1007/s40843–016–5061–1.
53. Hao J, Peng S, Qin T, Wang Z, Wen Y, He D, et al. Fabrication of hybrid Co3O4/NiCo2O4 nanosheets sandwiched by nanoneedles for high-performance supercapacitors using a novel electrochemical ion exchange. Sci China Mater. 2017; 60(12): 1168–78. doi: 10.1007/s40843–017–9139–8.
54. Khalid S, Cao C, Wang L, Zhu Y, Wu Y. A high performance solid state asymmetric supercapacitor device based upon NiCo2O4 nanosheets//MnO2 microspheres. RSC Adv. 2016; 6(74): 70292–302. doi: 10.1039/C6RA15420D.
55. Zhu Y, Cao C, Tao S, Chu W, Wu Z, Li Y. Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Sci Rep. 2014; 4: 5787. doi: 10.1038/srep05787.
56. Khalid S, Cao C, Naveed M, Younas W. 3D hierarchical MnO 2 microspheres: a prospective material for high performance supercapacitors and lithium-ion batteries. Sustainable Energy Fuels. 2017; 1(8): 1795–804. doi: 10.1039/C7SE00317J.
57. Zheng C, Cao C, Chang R, Hou J, Zhai H. Hierarchical mesoporous NiCo2O4 hollow nanocubes for supercapacitors. Phys Chem Chem Phys. 2016; 18(8): 6268–74. doi: 10.1039/C5CP07997G.
58. Khalid S, Cao C, Ahmad A, Wang L, Tanveer M, Aslam I, et al. Microwave assisted synthesis of mesoporous NiCo2O4 nanosheets as electrode material for advanced flexible supercapacitors. RSC Adv. 2015; 5(42): 33146–54. doi: 10.1039/C5RA02180D.
59. Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, et al. Asymmetric supercapacitor electrodes and devices. Adv Mater. 2017; 29(21): 1605336. doi: 10.1002/adma.201605336.
60. Zheng M, Xiao X, Li L, Gu P, Dai X, Tang H, et al. Hierarchically nanostructured transition metal oxides for supercapacitors. Sci China Mater. 2018; 61(2): 185–209. doi: 10.1007/s40843-017-9095-4.
61. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, et al. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater. 2012; 22(12): 2632–41. doi: 10.1002/adfm.201102839.
62. Owusu KA, Qu L, Li J, Wang Z, Zhao K, Yang C, et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat Commun. 2017; 8: 14264. doi: 10.1038/ncomms14264.
63. Boruah BD, Misra A. Internal asymmetric tandem supercapacitor for high working voltage along with superior rate performance. ACS Energy Lett. 2017; 2(8): 1720–8. doi: 10.1021/acsenergylett.7b00379.
64. Kim M, Kim J. Development of high power and energy density microsphere silicon carbide–MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. Phys Chem Chem Phys. 2014; 16(23): 11323–36. doi: 10.1039/c4cp01141d.
65. Qiu Y, Li G, Hou Y, Pan Z, Li H, Li W, et al. Vertically aligned carbon nanotubes on carbon nanofibers: a hierarchical three-dimensional carbon nanostructure for high-energy flexible supercapacitors. Chem Mater. 2015; 27(4): 1194–200. doi: 10.1021/cm503784x.
66. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010;10(12):4863–8. doi: 10.1021/nl102661q.
67. Hwang JY, El-Kady MF, Wang Y, Wang L, Shao Y, Marsh K, et al. Direct preparation and processing of graphene/RuO 2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy. 2015; 18: 57–70. doi: 10.1016/j.nanoen.2015.09.009.
68. Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano. 2010;4(10):5835–42. doi: 10.1021/nn101754k.
69. Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, et al. Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano. 2013; 7(7): 6237–43. doi: 10.1021/nn4021955.
70. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci (Weinh). 2017; 4(7): 1600539. doi: 10.1002/advs.201600539.
71. Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci. 2016; 9(1): 102–6. doi: 10.1039/C5EE03149D.
72. Lim E, Jo C, Kim H, Kim MH, Mun Y, Chun J, et al. Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. ACS Nano. 2015; 9(7): 7497–505. doi: 10.1021/acsnano.5b02601.
73. Wang Y, Luo J, Wang C, et al. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds: II. Comparison of LiMn2O4, LiCo1/3Ni1/3Mn1/3O2 and LiCoO2 Positive Electrodes. J Electrochem Soc. 2006; 153: A1425. doi 10.1149/1.2203772.
74. Shen L, Lv H, Chen S, Kopold P, van Aken PA, Wu X, et al. Peapod-like Li 3 VO 4 /N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors. Adv Mater. 2017; 29(27): 1700142. doi: 10.1002/adma.201700142.
75. Sun Yige, Tang J, Qin Faxiang, Yuan J, Zhang K, Li J, et al. Hybrid lithium-ion capacitors with asymmetric graphene electrodes. J Mater Chem A. 2017; 5(26): 13601–9. doi: 10.1039/C7TA01113J.
76. Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, et al. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ Sci. 2015; 8(3): 941–55. doi: 10.1039/C4EE02986K.
77. Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H. High-Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na0.5 MnO2 Nanosheet Assembled Nanowall Arrays. Adv Mater. 2017; 29(32): 1700804. doi: 10.1002/adma.201700804.
78. Guoshen Yang Jialei H, Wan Xuhao, Zhu Y, Liu B, et al. A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid supercapacitors enabled by sustainable cathode and electrolyte design. Nano Energy;90(A). doi: 10.6500(2021).
79. Wang S, Li T, Yin Y, Chang N, Zhang H, Li X. High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive. Nano Energy. 2022; 96. doi: 10.1016/j.nanoen.2022.107120.
80. Peng S, Li L, Wu HB, Madhavi S, Lou XWD. Controlled Growth of NiMoO4 nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. Adv Energy Mater. 2015; 5(2): 1401172. doi: 10.1002/aenm.201401172.

Conference Open Access Original Research
Volume 10
Issue 1
Received August 27, 2022
Accepted November 25, 2022
Published November 30, 2022