Asymmetrical Light Propagation in 2D Photonic Crystal Structure

[{“box”:0,”content”:”

n

Year : November 30, 2023 | Volume : 11 | Issue : 07 | Page : 70-75

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Man mohan Gupta

  1. [/foreach]

    n

n

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Research Scholar, Department of Physics, Institute of Applied Science, GLA University, Uttar Pradesh, India
  2. n[/if 1175][/foreach]

n

n

Abstract

nIn this work, using Plane Wave Expansion (PWE) and two-dimensional Finite Difference Time Domain (2D-FDTD) methods, we design a structure that shows the high asymmetry in propagation of light. Structure is based on two-dimensional Photonic Crystal (2D-PC) consisting of square lattice (39 X 39) of infinitely long circular rods of refractive index 2.9 in the background of refractive index 1. Radius of rods is 0.15a, where a is the lattice constant and chosen as 0.5 µm. To achieve the asymmetry in propagation of light, shape of rods of one of the diagonals of the proposed structure are modified from circular to elliptical. Structure is having less footprint area and high signal contrat ratio. Observed signal contrast ratio is 0.549 at operating frequency a⁄λ=0.569. Being linear and nonmagnetic, proposed structure may be useful to construct optical logical devices and circuits, and would facilitate for realization of photonic networks.

n

n

n

Keywords: Photonic Crystals, Self-collimation, Two Dimenssional Finite Difference Time Domain (2D-FDTD), Plane Wave Expansion (PWE) Methods,

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Polymer and Composites(jopc)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Man mohan Gupta Asymmetrical Light Propagation in 2D Photonic Crystal Structure jopc November 30, 2023; 11:70-75

n

How to cite this URL: Man mohan Gupta Asymmetrical Light Propagation in 2D Photonic Crystal Structure jopc November 30, 2023 {cited November 30, 2023};11:70-75. Available from: https://journals.stmjournals.com/jopc/article=November 30, 2023/view=0/

nn


nn[if 992 equals=”Open Access”] Full Text PDF[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘Full Text PDF‘);n }nelse if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }nelse if (fieldValue == ‘jopc’) { document.write(‘Full Text PDF‘); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]nn

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Jonnopoulos J. D., Johnson S. G., Winn J. N. and Meade R. D., “Photonic crystals: Molding the flow of light” 2nd edition (Princeton University Press, Princeton, New Jersey), 2008.
  2. Sharma P., Ghosh N., Gupta M. M., and Medhekar M., “Add-Drop Filter and Refractive Index and Temperature Sensor Using 2D Photonic Crystal Ring Resonator”, J. of Opt. and Phot., 2022, vol. 16, iss. 2, pp-221.
  3. Yu X. and Fan S., “Bends and splitters for self-collimated beams in photonic crystals”, Phys. Lett., 2003, vol. 83, iss.16, pp-3251.
  4. Shi S., Sharkawy A., Chen C., Pustai D. M., and Prather D. W., “Dispersion-based beam splitter in photonic crystals”, Lett., 2004, vol. 29, iss. 6, pp-617.
  5. Zhang Y., Zhang Y., and Li B., “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals”, Exp., 2007, vol. 15, iss. 15, pp-9287.
  6. Christina X. S. and Kabilan A. P., “Design of Optical Logic Gates Using Self-collimated Beams in 2D Photonic Crystal”, Sen., 2012, vol. 2, iss. 2, pp-173.
  7. Feng S., Ren C., Wang W. and Wang Y., “All-optical diode based on the self-collimation characteristics of the near-infrared photonic crystal heterojunctions”, Phys. Lett., 2012, vol. 9, iss.6pp-64001.
  8. Gupta M. M. and Medhekar S., “A versatile optical junction using photonic band-gap guidance and self collimation”, Phys. Lett., 2014, vol.105, iss13, pp-131104.
  9. Yao C. X., Hui L., Shen Q. Y., Fei W. Y., and Bo N., “Tunable Photonic Crystal Mach–Zehnder Interferometer Based on Self-collimation Effect”, Phys. Lett., 2008, vol. 25, iss. 12, pp-4307.
  10. Nguyen H. M., Dundar M. A., R. Heijden W. V., Drift E. W. J. M. V., Salemink H. W. M., Rogge S., and Caro J., “Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal”, Exp, 2010, vol.18, iss.7, pp-6437.
  11. Gupta M. M. and Medhekar S., “Asymmetric light reflection at the reflecting layer incorporated in a linear, time-independent and non-magnetic two-dimensional photonic crystal”, Phys. Lett., vol.114, iss5, pp-54002.
  12. Zhao N. S., Zhou H., Guo Q., Hu W., Yang X. B., Lan S., and Lin X. S., “Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules”, of Opti. Soc. of America B, 2006, vol. 23, iss. 11., pp-2434.
  13. Liu B., Liu Y. F., Li S. J., and He X. D., “High efficiency all-optical diode based on photonic crystal waveguide”, Comm., 2016, vol.368, iss.9, pp-7.
  14. Wang Q., Ouyang Z., and Liu Q., “Multiport photonic crystal circulators created by cascading magneto-optical cavities”, Soc. of America B, 2011, vol. 28, iss.4, pp-703.
  15. Wang Z. and Fan S., “Optical circulators in two-dimensional magneto-optical photonic crystals” Lett, 2005, vol.30, iss. 15, pp-1989.
  16. Cicek A., Yucel M. B., Kaya O. A., and Ulug B., “Refraction based photonic crystal diode”, Lett, 2012, vol. 37, iss. 14, pp-2937.
  17. Wang C., Zhou C. Z., and Li Z. Y., “On-chip optical diode based on silicon photonic crystal hetrojunctions”, Exp., 2011, vol. 19, iss.27, pp-26948.
  18. Gupta M. M., and Medhekar S., “Three-port asymmetric (three-port ordered-route) light transmission in a linear, time-independent and non-magnetic structure of photonic crystals”, Phys. Lett., 2016, vol.113, iss3, pp-34004.
  19. Wu Z. H., Xie K., Yang H. J., Jiang P. and He X. J., “All-angle self-collimation in two-dimensional rhombic-lattice photonic crystals”, Opt., 2012, vol.14, iss., pp-015002.
  20. Johnson S. G. and Joannopoulos J. D., “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis”, Exp., 2001, vol.8, iss.3, pp-173.
  21. Taflove A. and Hagness S. C., “Computatinal Electrodynamics: The Finite-Difference Time-Domain Method” (Artech House, Norwood, MA) 1995.
  22. Gupta M. M., and Medhekar S., “All-optical NOT and AND gates using counter propagating beams in nonlinear Mach–Zehnder interferometer made of photonic crystal waveguides”, Optik, 2016, vol. 127, iss. 3, pp-1221.
  23. Yee K.S., “Numerical solutions of initial boundary value problems involving maxwell’s equation in isotropic media”, IEEE Trans Anten. Propa. 1966, Vol.14, iss. 3, pp-302.
  24. Hocini A. and Harhouz A., “Modeling and analysis of the temperature sensitivity in two-dimensional photonic crystal microcavity”, of Nano. Phot., 2016, vol.10. iss.1, pp-016007.
  25. Berenger J. P., J. Comput. Phys., A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, 1994, vol. 114, iss2, pp-185.
  26. Berenger J. P., J. Comput. Phys., Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves, 1996, vol. 127, iss2, pp-363.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

Special Issue Open Access Review Article

n

n

n

n

n

Journal of Polymer and Composites

n

[if 344 not_equal=””]ISSN: 2321–2810[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 11
Issue 07
Received July 12, 2023
Accepted October 21, 2023
Published November 30, 2023

n

n

n

[if 1190 not_equal=””]n

Editor

n

[foreach 1188]n

n[/foreach]

n[/if 1190] [if 1177 not_equal=””]n

Reviewer

n

[foreach 1176]n

n[/foreach]

n[/if 1177]

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n n function myfun() {n x = document.getElementById(“editor”);n y = document.getElementById(“down”);n z = document.getElementById(“up”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n function myfun2() {n x = document.getElementById(“reviewer”);n y = document.getElementById(“down2”);n z = document.getElementById(“up2”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n”}]