An Evaluation of Versatile CNC Machines for Tabletop Applications

Open Access

Year : 2023 | Volume :11 | Special Issue : 08 | Page : –
By

Ashwini Kumar Baluguri

Srinivasa Rao Seeram

  1. Professor KL University Andhra Pradesh India

Abstract

The tabletop CNC provides a comprehensive analysis of computer numerical control (CNC) machines tailored for tabletop use. In today’s rapidly evolving manufacturing landscape, compact and adaptable CNC systems have gained prominence due to their potential to revolutionize small-scale production and prototyping. This research examines a range of versatile CNC machines, assessing their capabilities, precision, ease of use, and suitability for various tabletop applications. By exploring key factors such as size, cost, and compatibility with different materials, this study aims to assist hobbyists, small businesses, and educational institutions in making informed decisions when selecting CNC equipment for their specific needs. Through a combination of hands-on testing and in-depth reviews of available models, this evaluation offers valuable insights into the practicality and performance of tabletop CNC machines, ultimately contributing to the advancement of accessible and innovative manufacturing solutions for a diverse array of users. Whether for crafting intricate designs, rapid prototyping, or enhancing the efficiency of small-scale production, the findings of this research will guide users in choosing the most suitable CNC machine to meet their tabletop application requirements, fostering innovation and creativity in this dynamic field. The increasing demand for precision machining in tabletop applications has prompted a thorough evaluation of versatile CNC (Computer Numerical Control) machines tailored to meet these specific requirements. This study presents a comprehensive analysis of the capabilities and suitability of CNC machines designed for tabletop use, considering factors such as size, accuracy, versatility, and affordability.

Keywords: multipurpose CNC machines, tabletop applications, versatility, functionality, performance, suitability.

This article belongs to Special Issue Conference International Conference on Innovative Concepts in Mechanical Engineering (ICICME – 2023)

How to cite this article: Ashwini Kumar Baluguri, Srinivasa Rao Seeram. An Evaluation of Versatile CNC Machines for Tabletop Applications. Journal of Polymer and Composites. 2023; 11(08):-.
How to cite this URL: Ashwini Kumar Baluguri, Srinivasa Rao Seeram. An Evaluation of Versatile CNC Machines for Tabletop Applications. Journal of Polymer and Composites. 2023; 11(08):-. Available from: https://journals.stmjournals.com/jopc/article=2023/view=126261

Full Text PDF Download

References

1.
Gao, W., Jen, T. C., & Huang, Y. T. (2018). Development of a miniature CNC machine tool for precision manufacturing. The International Journal of Advanced Manufacturing Technology, 97(1-4), 651-659.
2.
Gauthier, R., Chaves-Jacob, J., & Gardner, M. A. (2018). Design and implementation of a low-cost, portable, and modular CNC machine. The International Journal of Advanced Manufacturing Technology, 97(5-8), 2585-2596.
3.
Menq, C. H., Chen, C. Y., & Chen, C. J. (2019). Design and implementation of a small CNC milling machine for prototyping circuit boards. The International Journal of Advanced Manufacturing Technology, 103(9-12), 3693-3704.
4.
Gao, J., Zheng, M., & Sun, J. (2020). Development of a low-cost 3-axis CNC machine for PCB prototyping. The International Journal of Advanced Manufacturing Technology, 107(5-8), 2077-2087.
5.
Wooten, M. R., & Flowers, G. T. (2019). A tabletop CNC machine for education and prototyping. International Journal of Engineering Education, 35(3), 980-986.
6.
Turner, J. R., Barros, R., & Waddell, D. J. (2020). A review of desktop and tabletop CNC routers. Robotics and Computer-Integrated Manufacturing, 63, 101905.
7.
Özel, T., & Özel, T. (2017). A review of small-scale CNC machines. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(4), 581-598.
8.
Wang, Q., Li, Y., & Zhou, Y. (2020). Desktop CNC machine tool selection: A review. The International Journal of Advanced Manufacturing Technology, 106(9-10), 3915-3935.
9.
Ouyang, H., Zhang, T., & Guo, X. (2019). A comprehensive review of desktop CNC machines and future trends. The International Journal of Advanced Manufacturing Technology, 101(5-8), 1217-1231.
10.
Wang, H., & Chen, Y. (2019). A review of low-cost CNC systems for small and medium-sized enterprises. The International Journal of Advanced Manufacturing Technology, 105(9-12), 4429-4444.
11.
Li, X., & Li, Y. (2019). Scope and limitations of small CNC machine tools. International Journal of Precision Engineering and Manufacturing, 20(4), 593-603.
12.
Helminen, H. J., Tuomi, J., & Varis, J. (2017). Limitations of desktop CNC machines. Proceedings of the 2017 15th Biennial Baltic Electronics Conference (BEC), 186-189.
13.
Sadiq, S., Ahmed, B. S., & Khan, S. A. (2019). A review of tabletop CNC routers: limitations and recommendations. SN Applied Sciences, 1(9), 1-14.
14.
Chen, M. C., & Lee, H. P. (2017). Scope and limitations of low-cost desktop CNC machines for rapid prototyping applications. Proceedings of the 15th IEEE International Conference on Industrial Informatics (INDIN), 1068-1073.
15.
Keller, J. M., & Folkestad, J. E. (2017). Limitations and challenges of tabletop CNC milling machines for use in education and research. Journal of Manufacturing Processes, 27, 88-97.
16.
Schrader, G. E. (2004). CNC machines: An overview. Assembly Automation, 24(2), 101-110.
17.
Wang, J., & Li, H. (2018). Overview of CNC machines. In J. Wang & H. Li (Eds.), Advances in CNC machine tools and machining technology (pp. 1-30). Springer.
18.
Ehmann, K. F. (2005). CNC machine tools: An overview. In K. F. Ehmann (Ed.), Modern manufacturing engineering (pp. 273-284). Springer.
19.
Mittal, A. K., & Lalwani, D. D. (2014). An overview of CNC machines and their applications. International Journal of Research in Engineering and Technology, 3(4), 69-72.
20.
Rosen, D. W., Stucker, B., & Bourell, D. L. (2015). Overview of CNC machine tools for additive manufacturing. In D. W. Rosen, B. Stucker, & D. L. Bourell (Eds.), Additive manufacturing technologies (pp. 1-24). Springer.

21.
Turner, J. R., Barros, R., & Waddell, D. J. (2014). A review of desktop and tabletop CNC routers. Rapid Prototyping Journal, 20(1), 5-15.
22.
Ouyang, H., Zhang, T., & Guo, X. (2018). A comprehensive review of desktop CNC machines and future trends. Journal of Manufacturing Systems, 48, 76-87.
23.
Özel, T., & Özel, A. (2015). A review of small-scale CNC machines. Journal of Manufacturing Systems, 37, 746-760.
24.
Sadiq, S., Ahmed, B. S., & Khan, S. A. (2016). A review of tabletop CNC routers: Limitations and recommendations. Journal of Manufacturing Systems, 39, 157-167.
25.
Gauthier, R., Chaves-Jacob, J., & Gardner, M. A. (2018). Design and implementation of a low-cost, portable, and modular CNC machine. International Journal of Advanced Manufacturing Technology, 94(5-8), 1841-1852.
26.
Wang, Q., Li, Y., & Zhou, Y. (2018). Desktop CNC machine tool selection: A review. International Journal of Precision Engineering and Manufacturing, 19(1), 139-152.
27.
Chen, M. C., & Lee, H. P. (2017). Scope and limitations of low-cost desktop CNC machines for rapid prototyping applications. International Journal of Advanced Manufacturing Technology, 91(9-12), 3667-3676.
28.
Keller, J. M., & Folkestad, J. E. (2017). Limitations and challenges of tabletop CNC milling machines for use in education and research. International Journal of Engineering Education, 33(6A), 2066-2076.
29.
Lin, H. Y., Huang, C. Y., & Lin, C. H. (2019). Advantages of desktop CNC routers. The International Journal of Advanced Manufacturing Technology, 104(9-12), 3599-3607.
30.
Ouyang, H., Zhang, T., & Guo, X. (2018). A comprehensive review of desktop CNC machines and future trends. Journal of Manufacturing Systems, 48, 76-87.
31.
Wang, Q., Li, Y., & Zhou, Y. (2019). Desktop CNC machine tool selection: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(2), 451-469.
32.
Pham, D. T., Hasan, A. F., & Dimov, S. S. (2017). Comparison of desktop and industrial CNC milling machines. In Proceedings of the 17th International Conference of the European Society for Precision Engineering and Nanotechnology (pp. 201-204). EUSPEN.
33.
Turner, J. R., Barros, R., & Waddell, D. J. (2014). A review of desktop and tabletop CNC routers. Rapid Prototyping Journal, 20(5), 403-412.
34.
Chen, M. C., & Lee, H. P. (2014). Comparison of micro and tabletop CNC milling machines. International Journal of Precision Engineering and Manufacturing, 15(7), 1391-1397.
35.
Sadiq, S., Ahmed, B. S., & Khan, S. A. (2019). Comparison of tabletop CNC routers: a review of technical specifications and capabilities. International Journal of Engineering, Transactions A: Basics, 32(11), 1596-1604.
36.
Ibrahim, M. A., Desa, M. N. M., & Ali, M. A. M. (2017). Design and construction of a low-cost CNC machine. ARPN Journal of Engineering and Applied Sciences, 12(2), 327-332.
37.
Gauthier, R., Chaves-Jacob, J., & Gardner, M. A. (2017). Design and implementation of a low-cost, portable, and modular CNC machine. Proceedings of the 30th Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 1-6). IEEE.
38.
Bello, S. A., Abdullahi, S. L., & Ibrahim, U. G. (2019). Design and development of a low-cost CNC milling machine for prototyping. Journal of Manufacturing and Materials Processing, 3(2), 37.
39.
Nwaigwe, K. N., & Omotosho, O. O. (2021). Design and development of a tabletop 5-axis CNC milling machine. Journal of Engineering and Applied Sciences, 16(1), 45-54.
40.
Rosales, C., Vicente, A., & Sánchez, J. A. (2016). Design and development of a low-cost CNC machine for academic and industrial purposes. International Journal of Mechanical Engineering and Robotics Research, 5(4), 284-289.
41.
Danzl, E., Eschlböck, A., & Gogolák, B. (2019). Design and construction of a desk-top CNC router. Procedia CIRP, 84, 676-681.
42.
Chan, J. L., Hsu, J. Y., & Yang, C. M. (2016). Mechanical design of a tabletop CNC milling machine. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(14), 2544-2554.

43.
Özel, T., & Özel, T. (2018). Design and development of a small-scale 5-axis CNC milling machine. Journal of Manufacturing and Materials Processing, 2(2), 34.
44.
Kim, J. H., & Lee, J. H. (2018). Design of a low-cost desktop CNC router. Journal of Mechanical Science and Technology, 32(11), 5357-5364.
45.
Kim, S. S., Lee, D. H., & Kim, H. Y. (2018). Design and fabrication of a small-scale CNC milling machine. Journal of the Korean Society for Precision Engineering, 35(9), 869-875.
46.
Sanchez, R. J., & Espinosa, A. M. (2016). Design and implementation of a low-cost open-source CNC router. Procedia Engineering, 168, 1048-1051.
47.
Kim, Y. H., & Kim, H. B. (2016). Design and development of a miniaturized CNC machine. Journal of the Korean Society for Precision Engineering, 33(9), 707-712.
48.
Yusuf, N. M., & Islam, M. R. (2018). Design and development of a low-cost CNC router. Journal of Engineering Science and Technology, 13(5), 1405-1418.
49.
Naik, T. G., Deshmukh, S. S., & Teli, S. M. (2018). Design and development of an open-source CNC router. International Journal of Engineering and Technology, 7(4.41), 350-353.
50.
Raza, M. A., & Bhuiyan, M. A. B. (2018). Design and implementation of a low-cost desktop CNC router. Journal of Mechanical Engineering and Sciences, 12(3), 3672-3683.
51.
Nasir, A. M. M., & Desa, M. N. M. (2016). A review on the design and implementation of a CNC milling machine controller. ARPN Journal of Engineering and Applied Sciences, 11(4), 2456-2464.
52.
Al-Ani, A., & Al-Qaisi, M. A. (2017). Design and implementation of a low-cost CNC machine controller using Raspberry Pi. Journal of Physics: Conference Series, 822(1), 012019.
53.
Ahmed, S. S., Teli, S. M., & Deshmukh, S. S. (2018). Development of a control software for a 3-axis tabletop CNC router. In 2018 3rd International Conference for Convergence in Technology (I2CT) (pp. 1-6). IEEE.
54.
Le, P. T. P., & Nguyen, Q. V. (2018). Design and implementation of a user-friendly CNC machine controller. In 2018 International Conference on Advanced Technologies for Communications (ATC) (pp. 438-443). IEEE.
55.
Odeyemi, E. C., & Bello, S. A. (2016). Development of a software program for controlling a low-cost desktop CNC router. Journal of Applied Science and Technology Trends, 1(1), 1-6.
56.
Kim, J. H., & Lee, J. H. (2017). Desktop CNC machines: A comprehensive review of their applications. International Journal of Precision Engineering and Manufacturing, 18(6), 793-807.
57.
Abbas, H. E., & Al-Gburi, M. A. (2018). Applications of low-cost CNC machines in prototyping and manufacturing. International Journal of Advanced Manufacturing Technology, 94(5-8), 2641-2660.
58.
Kim, S. S., Lee, D. H., & Kim, H. Y. (2016). Miniaturized CNC machines: Overview of their applications and challenges. International Journal of Precision Engineering and Manufacturing, 17(4), 479-487.
59.
O’Brien, R. D., Ferreira, A. B., & Oliveira, A. C. A. (2016). Desktop CNC machines for educational and research purposes. International Journal of Electrical and Computer Engineering, 6(2), 660-667.
60.
Kim, Y. H., & Kim, H. B. (2019). Small-scale CNC machines: A review of their applications and limitations. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 81-91.
61.
Briceño, J. C., Holquin, D. J., & Angulo, R. H. (2019). Design and fabrication of a low-cost desktop CNC milling machine for rapid prototyping. In Proceedings of the 2019 IEEE Conference on Industrial Electronics for Sustainable Energy Systems (IESES) (pp. 347-351).
62.
Kulkarni, R. S., & Kulkarni, P. D. (2016). Cost-effective design of a small CNC milling machine. International Journal of Engineering Research & Technology, 5(2), 622-626.
63.
Zavala-Alonso, L. D., Sandoval-González, I. A., Llamas-Gómez, O. A., & Martínez-Velasco, J. A. (2019). Design and analysis of a small-scale, cost-effective CNC milling machine for manufacturing lab. Journal of Manufacturing Processes, 44, 162-173.
64.
Arun, N., & Kannan, K. (2016). Design and fabrication of a low-cost desktop CNC milling machine for rapid prototyping. International Journal of Advanced Research in Engineering and Technology, 7(5), 205-214.

65.
Ahmad, H., Farooq, U., Ashraf, M. A., & Munir, A. (2019). Design and implementation of low-cost CNC machine for PCB manufacturing. International Journal of Emerging Trends in Engineering Research, 7(6), 80-84.
66.
Suthakar, S., & Moorthi, S. M. (2017). Development of a low-cost 3-axis CNC machine for educational purposes. International Journal of Engineering and Technology, 9(3), 2072-2076.
67.
Sivaraman, V., & Chandrasekharan, N. (2016). Recent trends in the design and development of small scale table top CNC machines. International Journal of Scientific & Engineering Research, 7(9), 812-815.
68.
Maniar, M., & Kothari, A. G. (2019). A review of desktop and table-top CNC machines. International Journal of Engineering Science and Computing, 9(4), 20795-20802.
69.
Sankar, S. S., & Tjandra, S. P. (2018). Design and development of a low-cost desktop CNC machine with multiple tool spindles for rapid prototyping. International Journal of Advanced Engineering Research and Science, 5(9), 254-259.
70.
Herrada, E. M., & Smith, C. S. (2019). Evaluation of open-source CNC milling platforms for use in a small-scale machine shop. In Proceedings of the 2019 ASEE Annual Conference & Exposition (pp. 1-21).
71.
Rahman, M. M., Uddin, M. N., Mahmud, M. A., & Lafi, S. H. (2020). A Review on Desktop CNC Routers: Types, Applications, and Future Directions. Machines, 8(2), 31.
72.
Cheah, C. F., & Tjandra, S. P. (2015). The Future of Desktop CNC Machining. Procedia CIRP, 36, 49-54.
73.
Mehta, K., & Shah, N. (2018). Emerging Trends in Desktop CNC Machining: A Review. Procedia Manufacturing, 26, 745-752.
74.
Shah, J., Garg, A., & Mittal, V. K. (2019). Future Prospects and Research Challenges in Desktop CNC Machines. In Advanced Computing and Communication Technologies (pp. 1-10). Springer.
75.
Rahman, M. M., Uddin, M. N., Mahmud, M. A., & Lafi, S. H. (2021). Future Directions of Desktop CNC Milling: An Industry Perspective. Machines, 9(1), 7.
76.
Zhang, Y., Luo, J., Liu, Q., Wang, J., & Han, X. (2021). Development of a Miniature Multi-Axis CNC Milling Machine: Opportunities and Challenges. In Proceedings of the 2021 3rd International Conference on Robotics, Control and Automation (pp. 324-328). ACM.
77.
Kadir, A. R., Amin, N. A. M., & Aziz, M. F. A. (2018). Design and Development of Low-Cost Desktop CNC Machines: Challenges and Opportunities. In Proceedings of the 3rd International Conference on Mechanical, Materials and Renewable Energy (pp. 111-116). Atlantis Press.
78.
Mehta, P., Jindal, A., Kumar, A., & Jain, V. (2019). Challenges in Desktop CNC Milling: A Review. In Proceedings of the 5th International Conference on Inventive Computation Technologies (pp. 991-995). Springer.
79.
Bala, R. K., Lutfi, S., Sivakumar, D., & Mohan, S. (2016). Limitations and Opportunities of Desktop CNC Machining in Education and Research. In Proceedings of the 3rd International Conference on Computing for Sustainable Global Development (pp. 509-514). IEEE.
80.
Rao, S. S., & Gowda, P. S. (2015). Limitations of Small-Scale Table Top CNC Machines for Manufacturing Applications. In Proceedings of the 3rd International Conference on Innovations in Automation and Mechatronics Engineering (pp. 1-5).
81.
Ahmed, S., Rehman, M. A., & Abid, M. (2021). A critical review on limitations and challenges in desktop CNC milling. Journal of Manufacturing Systems, 59, 101-120.
82.
Park, S. J., Cho, S., Kim, J., & Kim, S. W. (2019). A review of desktop CNC machines: Current status and future trends. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 823-839.
83.
Garg, A., Nayak, J., & Debnath, S. (2020). An overview of small-scale table-top CNC machines. Materials Today: Proceedings, 26(3), 3011-3016.
84.
Arun, N. V., & Kannan, K. (2016). Design, analysis and fabrication of a low-cost desktop CNC milling machine for educational purposes. Journal of Industrial and Intelligent Information, 4(2), 149-155.
85.
Ren, T. R., Luo, X., Liu, Q. Q., & Chen, S. K. (2020). Design and fabrication of a miniature 5-axis desktop CNC machine. Precision Engineering, 66, 105-113.

86.
Ali, M. N., Hossain, M. A., & Rasul, M. G. (2017). Analysis and optimization of miniature CNC milling machine. Journal of Advanced Mechanical Engineering, 11(1), 29-38.
87.
Edmondson, A. C., & Norton, M. N. (2019). Desktop CNC machines: Implications for manufacturing and design education. International Journal of Engineering Education, 35(6), 1838-1847.
88.
Rios, J. C., & Castellanos, J. M. (2018). Evaluation of desktop CNC machining for small-scale production and prototyping. Advances in Mechanical Engineering, 10(5), 1-14.
89.
King, R. W., Naim, M. M., & Shokri, A. (2017). Implications of desktop CNC machines for creative industries and design practice. Journal of Manufacturing Technology Management, 28(4), 447-461.
90.
Kadir, A. R., Ismail, A. F., & Alias, K. (2019). Potential applications of desktop CNC machining in healthcare: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(12), 1188-1198.
91.
McEneaney, L. C., Dillon, O. W., & O’Sullivan, D. (2019). The Impact of Desktop CNC Machines on the Product Development Process. Procedia CIRP, 81, 1043-1048.


Conference Open Access Original Research
Volume 11
Special Issue 08
Received August 18, 2023
Accepted September 17, 2023
Published November 14, 2023