A Smart Investigation on Nanocomposites Composed of Carbon Dioxide-Derived, Repeatable Biological Polymers

Open Access

Year : 2023 | Volume :11 | Special Issue : 03 | Page : 1-12
By

Dr. Chakrapani I S,

Abstract

In recent years, an increasing number of people have begun to focus their attention on the environmental impacts that are caused by the widespread use of therapeutic polymeric composites that are generated from fossil fuels. Another factor that probably contributes to the short shelf life of biomedical polymer products is the fact that many of them are designed to be used just once before being discarded. When a biomedical polymer product goes over its sell-by date, it must often be burned before being discarded, thus increasing carbon dioxide emissions (CO2). By ultimately replacing their unsustainable fossil-based equivalents, biomedical goods based on polymers produced from CO2 fixation would improve CO2 recycling in this industry and aid in the mitigation of the greenhouse effect. However, the bulk of presently available polymer materials manufactured from renewable raw materials do not satisfy these expectations due to a number of property deficiencies, and the superiority and values for biomedical devices are constantly expanding. The materials do not have the essential characteristics to satisfy the requirements. Many people are trying to apply nanotechnology in this field due to these problems. In addition to discussing replicable CO2-fixed polymer-based nanocomposites that may be used in biological applications, this work gives a number of suggestions for further research areas in this field.
areas in this field.

Keywords: Biopolymers, gelatin, nanocomposites, emission, chitin

[This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)]

How to cite this article: Dr. Chakrapani I S. A Smart Investigation on Nanocomposites Composed of Carbon Dioxide-Derived, Repeatable Biological Polymers. Journal of Polymer and Composites. 2023; 11(03):1-12.
How to cite this URL: Dr. Chakrapani I S. A Smart Investigation on Nanocomposites Composed of Carbon Dioxide-Derived, Repeatable Biological Polymers. Journal of Polymer and Composites. 2023; 11(03):1-12. Available from: https://journals.stmjournals.com/jopc/article=2023/view=126058

Full Text PDF Download


Browse Figures

References

1.
Abd Razak SI, Ahmad Sharif N, Abdul Rahman W. Biodegradable polymers and their bone applications: a review. Int J Basic Appl Sci. 2012; 12: 31–49. doi: 10.1.1.418.8617/123101-8585IJBAS-IJENS.
2.
Allahyari S, Zahednezhad F, Khatami M, Hashemzadeh N, Zakeri-Milani P, Trotta F. Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. J Drug Deliv Sci Technol. 2021; 67: 102931. doi: 10.1016/j.jddst.2021.102931.
3.
Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Dokmeci MR, Peppas NA, Khademhosseini A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv Mater. 2014; 26 (1): 85–124. doi: 10.1002/adma.201303233.
4.
Arias LS, Pessan JP, Vieira APM, de Lima TMT, Delbem ACB, Monteiro DR. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018; 7 (2): 46. doi: 10.3390/antibiotics7020046.
5.
Arya G, Kumari RM, Sharma N, Gupta N, Chandra R, Nimesh S. Polymeric nanocarriers for site-specific gene therapy. In: Grumezescu AM, editor. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. Amsterdam, Netherlands: Elsevier; 2018. pp. 689–714. doi: 10.1016/B978-0-12-813689-8.00018-5.
6.
Bagdadi AV, Safari M, Dubey P, Basnett P, Sofokleous P, Humphrey E, Locke I, Edirisinghe M, Terracciano C, Boccaccini AR, Knowles JC, Harding SE, Roy I.. Poly(3‐hydroxyoctanoate), a promising new material for cardiac tissue engineering. J Tissue Eng. Regen Med. 2018; 12 (1): e495–e512. doi: 10.1002/term.2318.
7.
Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound healing: from material sciences to wound healing applications. Nano Select. 2020; 1 (5): 443–460. doi: 10.1002/nano.202000055.
8.
Basu A, Heitz K, Strømme M, Welch K, Ferraz N. Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: candidate materials for advanced wound care applications. Carbohydr Polym. 2018; 181: 345–350. doi: 10.1016/j.carbpol.2017.10.085.
9.
Bauer A, Menrad K. Standing up for the Paris Agreement: do global climate targets influence individuals’ greenhouse gas emissions? Environ Sci Policy. 2019; 99: 72–79. doi: 10.1016/j.envsci.2019.05.015.

10.
Bennett BL. Bleeding control using hemostatic dressings: lessons learned. Wilderness Environ Med. 2017; 28 (2): S39–S49. doi: 10.1016/j.wem.2016.12.005.
11.
Bi C, Li X, Xin Q, Han W, Shi C, Guo R, Shi W, Qiao R, Wang X, Zhiong J. Effect of extraction methods on the preparation of electrospun/electrosprayed microstructures of tilapia skin collagen. J Biosci Bioeng. 2019; 128 (2): 234–240. doi: 10.1016/j.jbiosc.2019.02.004.
12.
Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y. Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials. 2010; 31 (34): 8889–8901. doi: 10.1016/j.biomaterials.2010.07.108.
13.
Bohr A, Water JJ, Wang Y, Arnfast L, Beck-Broichsitter M. Potential of surface-eroding poly (ethylene carbonate) for drug delivery to macrophages. Int J Pharm. 2016; 511 (2): 814–820. doi: 10.1016/j.ijpharm.2016.07.075.
14.
Bosco R, Iafisco M, Tampieri A, Jansen JA, Leeuwenburgh SC, Van Den Beucken JJ. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity. Appl Surf Sci. 2015; 328: 516–524. doi: 10.1016/j.apsusc.2014.12.072.
15.
Brenner M, Hilliard C, Peel G, Crispino G, Geraghty R, O’Callaghan G. Management of pediatric skin-graft donor sites: a randomized controlled trial of three wound care products. J Burn Care Res. 2015; 36 (1): 159–166. doi: 10.1097/BCR.0000000000000161.
16.
Cai X, Yang X, Zhang H, Wang G. Modification of biodegradable poly(butylene carbonate) with 1,4-cyclohexanedimethylene to enhance the thermal and mechanical properties. Polym Degrad Stabil. 2017; 143: 35–41. doi: 10.1016/j.polymdegradstab.2017.06.018.
17.
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: challenges and opportunities. Int J Biol Macromol. 2021; 178: 193–228. doi: 10.1016/j.ijbiomac.2021.02.123.
18.
Chen Z, Mo X, He C, Wang H. Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydr Polym. 2008; 72 (3): 410–418. doi: 10.1016/j.carbpol.2007.09.018.
19.
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, et al. Biomedical polymers: synthesis, properties, and applications. Sci China Chem. 2022; 65: 1010–1075. doi: 10.1007/s11426-022-1243-5.
20.
Chen X, Zhao S, Chu S, Liu S, Yu M, Li J, Gao F, Liu Y. A novel sustained release fluoride strip based poly(propylene carbonate) for preventing caries. Eur J Pharm Sci. 2022; 171: 106128. doi: 10.1016/j.ejps.2022.106128.
21.
Chowdhury H, Loganathan B. Third-generation biofuels from microalgae: a review. Curr Opin Green Sustain Chem. 2019; 20: 39–44. doi: 10.1016/j.cogsc.2019.09.003.
22.
Chu D, Beck-Broichsitter M, Curdy C, Riebesehl B, Kissel T. Feasibility of macrophage mediated on-demand drug release from surface eroding poly (ethylene carbonate). Int J Pharm. 2014; 465 (1–2): 1–4. doi: 10.1016/j.ijpharm.2014.02.005.
23.
Cui F, Li G, Huang J, Zhang J, Lu M, Lu W, Huan J, Huang Q. Development of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) burn dressing with anti-methicillin-resistant Staphylococcus aureus and promotion wound healing properties. Drug Deliv (Lond). 2011; 18 (3): 173–180. doi: 10.3109/10717544.2010.509363.
24.
Dånmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, Albertsson A-C. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater. 2011; 7 (5): 2035–2046. doi: 10.1016/j.actbio.2011.02.011.
25.
de Oliveira Cardoso VM, Cury BSF, Evangelista RC, Gremião MPD. Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. J Mech Behav Biomed Mater. 2017; 65: 317–333. doi: 10.1016/j.jmbbm.2016.08.005.
26.
Di Maggio N, Piccinini E, Jaworski M, Trumpp A, Wendt DJ, Martin I. Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials. 2011; 32 (2): 321–329. doi: 10.1016/j.biomaterials.2010.09.041.

27.
Ding X, Yang C, Lim TP, Hsu LY, Engler AC, Hedrick JL, Yang Y-Y. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials. 2012; 33 (28): 6593–6603. doi: 10.1016/j.biomaterials.2012.06.001.
28.
Dippold D, Cai A, Hardt M, Boccaccini AR, Horch RE, Beier JP, Schubert DW. Investigation of the batch-to-batch inconsistencies of collagen in PCL-collagen nanofibers. Mater Sci Eng C. 2019; 95: 217–225. doi: 10.1016/j.msec.2018.10.057.
29.
Duan B, Sun P, Wang X, Yang C. Preparation and properties of starch nanocrystals/carboxymethyl chitosan nanocomposite films. Starch/Starke. 2011; 63 (9): 528–535. doi: 10.1002/star.201000136.
30.
Duan R, Sun Z, Pang X, Hu C, Shao H, Chen X, Wang X. Non-symmetrical aluminium salen complexes: synthesis and their reactivity with cyclic ester. Polymer. 2015; 77: 122–128. doi: 10.1016/j.polymer.2015.09.036.
31.
Duan R, Hu C, Li X, Pang X, Sun Z, Chen X, Wang X. Air-stable salen–iron complexes: stereoselective catalysts for lactide and ε-caprolactone polymerization through in situ initiation. Macromolecules. 2017; 50 (23): 9188–9195. doi: 10.1021/acs.macromol.7b01766.
32.
Duan R, Qu Z, Pang X, Zhang Y, Sun Z, Zhang H, Bian X, Chen X. Ring‐opening polymerization of lactide catalyzed by bimetallic salen‐type titanium complexes. Chin J Chem. 2017; 35 (5): 640–644. doi: 10.1002/cjoc.201600580.
33.
Duan R, Hu C, Sun Z, Pang X, Chen X. Zinc and magnesium complexes bearing oxazoline-derived ligands and their application for ring opening polymerization of cyclic esters. ACS Omega. 2018; 3 (9): 11703–11709. doi: 10.1021/acsomega.8b01997.
34.
Duan R, Hu C, Sun Z, Zhang H, Pang X, Chen X. Conjugated tri-nuclear salen-Co complexes for the copolymerization of epoxides/CO2: cocatalyst-free catalysis. Green Chem. 2019; 21 (17): 4723–4731. doi: 10.1039/C9GC02045D.
35.
Duan R, Hu C, Zhou Y, Huang Y, Sun Z, Zhang H, Pang X. Propylene oxide cycloaddition with carbon dioxide and homopolymerization: application of commercial beta zeolites. Ind Eng Chem Res. 2021; 60 (3): 1210–1218. doi: 10.1021/acs.iecr.1c00080.
36.
Duan R, Zhou Y, Huang Y, Sun Z, Zhang H, Pang X, Chen X. A trinuclear salen–Al complex for copolymerization of epoxides and anhydride: mechanistic insight into a cocatalyst-free system. Chem Commun. 2021; 57 (1): 133–136. doi: 10.1039/D0CC06874H.
37.
Dumville JC, Keogh SJ, Stubbs N, Walker RM, Fortnam M. Alginate dressings for treating pressure ulcers. Cochrane Database Syst Rev. 2014; 8: CD011277. doi: 10.1002/14651858.CD011277.pub2.
38.
Dwivedi R, Pandey R, Kumar S, Mehrotra D. Poly hydroxyalkanoates (PHA): role in bone scaffolds. J Oral Biol Craniofac Res. 2020; 10 (1): 389–392. doi: 10.1016/j.jobcr.2019.10.004.
39.
Elsayed Y, Lekakou C, Labeed F, Tomlins P. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts. Mater Sci Eng C. 2016; 61: 473–483. doi: 10.1016/j.msec.2015.12.081.
40.
Endres HJ, Siebert-Raths A. Engineering Biopolymers Markets, Manufacturing, Properties and Applications. Munich, Germany: Hanser; 2011. pp. 3–15.
41.
Faga A, Nicoletti G, Brenta F, Scevola S, Abatangelo G, Brun P. Hyaluronic acid three‐dimensional scaffold for surgical revision of retracting scars: a human experimental study. Int Wound J. 2013; 10 (3): 329–335. doi: 10.1111/j.1742-481X.2012.00981.x.
42.
Fang HW, Kao WY, Lin PI, Chang GW, Hung YJ, Chen RM. Effects of polypropylene carbonate/poly (D,L-lactic) acid/tricalcium phosphate elastic composites on improving osteoblast maturation. Ann Biomed Eng. 2015; 43 (8): 1999–2009. doi: 10.1007/s10439-014-1236-9.
43.
Fang H, Guo Z, Chen J, Lin L, Hu Y, Li Y, Tian H, Chen X. Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo. Nat Commun. 2021; 12 (1): Article 6742. doi: 10.1038/s41467-021-27078-x.
44.
Feng X, Xu W, Xu X, Li G, Ding J, Chen X. Cystine proportion regulates fate of polypeptide nanogel as nanocarrier for chemotherapeutics. Sci China Chem. 2021; 64 (2): 293–301. doi: 10.1007/s11426-020-9884-6.
45.
Fernandes M, Padrão J, Ribeiro AI, Fernandes RD, Melro L, Nicolau T, Mehravani B, Alves C, Rodrigues R, Zille A. Polysaccharides and metal nanoparticles for functional textiles: a review. Nanomaterials. 2022; 12 (6): 1006. doi: 10.3390/nano12061006.

46.
Foox M, Zilberman M. Drug delivery from gelatin-based systems. Expert Opin Drug Deliv. 2015; 12 (9): 1547–1563. doi: 10.1517/17425247.2015.1037272.
47.
Frederiksen CS, Haugaard VK, Poll L, Miquel Becker E. Light-induced quality changes in plain yoghurt packed in polylactate and polystyrene. Eur Food Res Technol. 2003; 217 (1): 61–69. doi: 10.1007/s00217-003-0722-3.
48.
Fu K, Pack DW, Klibanov AM, Langer R. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res. 2000; 17 (1): 100–106. doi: 10.1023/a:1007582911958.
49.
Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym. 2013; 92 (2): 1432–1442. doi: 10.1016/j.carbpol.2012.10.071.
50.
García‐Hernández AB, Morales‐Sánchez E, Calderón‐Domínguez G, de la Paz Salgado‐Cruz M, Farrera‐Rebollo RR, Vega‐Cuellar MÁ, García-Bórquez A. Hydrolyzed collagen on PVA‐based electrospun membranes: synthesis and characterization. J Appl Polym Sci. 2021; 138 (41): 51197. doi: 10.1002/app.51197.
51.
Gasperini L, Mano JF, Reis RL. Natural polymers for the microencapsulation of cells. J R Soc Interface. 2014; 11 (100): 20140817. doi: 10.1098/rsif.2014.0817.
52.
Ghavimi SAA, Ebrahimzadeh MH, Solati-Hashjin M, Abu Osman NA. Polycaprolactone/starch composite: fabrication, structure, properties, and applications. J Biomed Mater Res A. 2015; 103 (7): 2482–2498. doi: 10.1002/jbm.a.35371.
53.
Gibb BC. Plastics are forever. Nat Chem. 2019; 11 (5): 394–395. doi: 10.1038/s41557-019-0260-7.
54.
Giménez CS, Olea FD, Locatelli P, Dewey RA, Abraham GA, Montini Ballarin F, Bauzá MDR, Hnatiuk A, De Lorenzi A, Neira Sepúlveda Á, Embon M, Cuniberti L, Crottogini A. Effect of poly(L-lactic acid) scaffolds seeded with aligned diaphragmatic myoblasts overexpressing connexin-43 on infarct size and ventricular function in sheep with acute coronary occlusion. Artific Cells Nanomed Biotechnol. 2018; 46: S717–S724. doi: 10.1080/21691401.2018.1508029.
55.
Gobin AS, Butler CE, Mathur AB. Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend. Tissue Eng. 2006; 12 (12): 3383–3394. doi: 10.1089/ten.2006.12.3383.
56.
Gu X, Cao R, Li F, Li Y, Jia H, Yu H. Graphene oxide as a nanocarrier for controlled loading and targeted delivery of Typhonium giganteum drugs. J Chem. 2018; 2018: Article 6325870. doi: 10.1155/2018/6325870.


Special Issue Open Access Original Research
Volume 11
Special Issue 03
Received January 30, 2023
Accepted February 2, 2023
Published November 13, 2023