Structural, Electronic and Optical Properties of ZnO Material Using First Principle Calculation

Open Access

Year : 2023 | Volume : 11 | Special Issue : 05 | Page : 27-34
By

    Jaiveer Singh

  1. Student, Lal Bahudur Shastri Senior Secondary School, Rajasthan, India

Abstract

Structural, electronic and optical properties have been determined by using first principle calculation for ZnO material. In present study, full potential linearized augmented plane wave method has been selected with generalised gradient approximation executed in WIEN2k. Structure of ZnO material stabilises in the Wurtzite form of hexagonal closed packed crystal with lattice constant a=3.289Å, c= 5.307Å. Density of states and band structure diagram of ZnO material shows semiconductor nature with a energy band gap of 0.65 eV. Reflectivity, dielectric function, optical absorption and conductivity, refractive index, energy loss and extinction coefficient have also been explored as a dependence on photon energy incident on ZnO material.

Keywords: Structural, Electronic and Optical Properties of ZnO Material Using First Principle Calculation

This article belongs to Special Issue Conference ICASEMCT-2023: International Conference on Advancements in Smart Electronics, Materials and Communication Technologies

How to cite this article: Jaiveer Singh Structural, Electronic and Optical Properties of ZnO Material Using First Principle Calculation jopc 2023; 11:27-34
How to cite this URL: Jaiveer Singh Structural, Electronic and Optical Properties of ZnO Material Using First Principle Calculation jopc 2023 {cited 2023 Jul 26};11:27-34. Available from: https://journals.stmjournals.com/jopc/article=2023/view=116696

Full Text PDF Download

Browse Figures

References

1. Kim, S., Kwon, H. J., Lee, S., Shim, H., Chun, Y., Choi, W., … & Lee, S. Y. (2011). Low‐power flexible organic light‐emitting diode display device. Advanced Materials, 23(31), 3511–3516. https://doi.org/10.1002/adma.201101066 2. Rehman, A., Zeng, K., & Wang, Z. (2015, March). Display device-adapted video quality-of-experience assessment. In Human vision and electronic imaging XX (Vol. 9394, pp. 27–37). SPIE. https://doi.org/10.1117/12.2077917 3. Ma, L., & Shao, Y. F. (2020). A brief review of innovative strategies towards structure design of practical electronic display devices. Journal of Central South University, 27(6), 1624–1644. https://doi.org/10.1007/s11771-020-4395-x 4. Park, J., & Kim, S. (2022). Improving endurance and reliability by optimising the alternating voltage in Pt/ZnO/TiN RRAM. Results in Physics, 39, 105731. https://doi.org/10.1016/ j.rinp.2022.105731
5. Isyaku, U. B., Khir, M. H. B. M., Nawi, I. M., Zakariya, M. A., & Zahoor, F. (2021). ZnO based resistive random access memory device: a prospective multifunctional next-generation memory. IEEE Access, 9, 105012-105047. https://doi.org/10.1109/ACCESS.2021.3098061
6. Lin, C. L., Tang, C. C., Wu, S. C., Juan, P. C., & Kang, T. K. (2015). Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of Al/ZnO/Al resistive RAM (RRAM). Microelectronic Engineering, 136, 15–21. https://doi.org/10.1016/ j.mee.2015.03.027
7. Franco, M. A., Conti, P. P., Andre, R. S., & Correa, D. S. (2022). A review on chemiresistive ZnO gas sensors. Sensors and Actuators Reports, 100100. https://doi.org/10.1016/j.snb. 2022.131674
8. Lan, Y., Yang, G., Zhao, Y., Liu, Y., & Demir, A. (2022). Facet passivation process of high-power laser diodes by plasma cleaning and ZnO film. Applied Surface Science, 596, 153506. https://doi.org/10.1016/j.apsusc.2022.153506
9. Wang, Y., Zheng, Z., Wang, J., Liu, X., Ren, J., An, C., Zhang, S. & Hou, J. (2023). New Method for Preparing ZnO Layer for Efficient and Stable Organic Solar Cells. Advanced Materials, 35(5), 2208305. https://doi.org/10.1002/adma.202208305
10. Zeng, J., Qi, Y., Liu, Y., Chen, D., Ye, Z., & Jin, Y. (2022). ZnO-based electron-transporting layers for perovskite light-emitting diodes: Controlling the interfacial reactions. The Journal of Physical Chemistry Letters, 13(2), 694–703. https://doi.org/10.1021/acs.jpclett.1c04117
11. Younis, A., Chu, D., & Li, S. (2013). Bi-stable resistive switching characteristics in Ti-doped ZnO thin films. Nanoscale Research Letters, 8, 1-6. https://doi.org/10.1186/1556-276X-8-154
12. Kim, D. H., Lee, D. W., Oh, J. Y., Won, J., Liu, Y., & Seo, D. S. (2022). Self-aligned liquid crystals and enhanced electro-optical properties on solution-processed aluminum gallium tin zinc oxide surfaces. Journal of Materials Research and Technology, 20, 291–302. https://doi.org/ 10.1016/j.jmrt.2022.07.050
13. Kawajiri, K., Tahara, K., & Uemiya, S. (2022). Life Cycle assessment of critical material substitution: Indium tin oxide and aluminum zinc oxide in transparent electrodes. Resources, Environment and Sustainability, 7, 100047. https://doi.org/10.1016/j.resenv.2022.100047
14. Wang, B., Zhang, Q., He, J., Huang, F., Li, C., & Wang, M. (2022). Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water. Journal of Energy Chemistry, 65, 304–311. https://doi.org/10.1016/j.jechem.2021.06.004
15. Zhang, L. X., Zhao, M. M., Yin, Y. Y., Xing, Y., & Bie, L. J. (2022). Rich defects and nanograins boosted formaldehyde sensing performance of mesoporous polycrystalline ZnO nanosheets. Rare Metals, 41(7), 2292–2304. https://doi.org/10.1007/s12598-021-01946-3
16. Gupta, C.P., Sharma, S.K., Bhowmik, B., Sampath, K. T., Periasamy, C. & Sancheti, S., (2019) Development of Highly Sensitive and Selective Ethanol Sensors Based on RF Sputtered ZnO Nanoplates. J. Electron. Mater. 48, 3686–3691. https://doi.org/10.1007/s11664-019-07127-4

17. Harun, K., Yaakob, M. K., Taib, M. F. M., Sahraoui, B., Ahmad, Z. A., & Mohamad, A. A. (2017). Efficient diagnostics of the electronic and optical properties of defective ZnO nanoparticles synthesized using the sol–gel method: experimental and theoretical studies. Materials Research Express, 4(8), 085908. https://iopscience.iop.org/article/10.1088/2053-1591/aa8151/meta 18. Harun, K., Salleh, N. A., Deghfel, B., Yaakob, M. K., & Mohamad, A. A. (2020). DFT+ U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review. Results in Physics, 16, 102829. https://doi.org/10.1016/j.rinp.2019.102829 19. Matur, U. C., Duru, I. P., & Akcan, D. (2022). Tracking optical properties of ZnO: Mg thin films: Experimental and first principles calculations. Ceramics International, 48(13), 19090-19097. https://doi.org/10.1016/j.ceramint.2022.03.199 20. Bashyal, K., Pyles, C. K., Afroosheh, S., Lamichhane, A., & Zayak, A. T. (2018). Empirical optimization of DFT+ U and HSE for the band structure of ZnO. Journal of Physics: Condensed Matter, 30(6), 065501. https://iopscience.iop.org/article/10.1088/1361-648X/aaa441/meta 21. Xia, C., Wang, F., & Hu, C. (2014). Theoretical and experimental studies on electronic structure and optical properties of Cu-doped ZnO. Journal of alloys and compounds, 589, 604–608. https://doi.org/10.1016/j.jallcom.2013.11.066 22. Yao, G. Y., Fan, G. H., Zhao, F., Ma, J. H., Chen, J., Zheng, S. W., Zeng, S.M., He, L.F. & Zhang, T. (2012). In assisted realization of p-type C-doped ZnO: A first-principles study. Physica B: Condensed Matter, 407(17), 3539–3542. https://doi.org/10.1016/j.physb.2012.05.019 23. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865 24. Ul Haq, B., Ahmed, R., Goumri-Said, S., Shaari, A., & Afaq, A. (2013). Electronic structure engineering of ZnO with the modified Becke–Johnson exchange versus the classical correlation potential approaches. Phase Transitions, 86(12), 1167–1177. https://doi.org/10.1080/01411594.2012.755183 25. Yaakob, M. K., Hussin, N. H., Taib, M. F. M., Kudin, T. I. T., Hassan, O. H., Ali, A. M. M., & Yahya, M. Z. A. (2014). First principles LDA+ U calculations for ZnO materials. Integrated Ferroelectrics, 155(1), 15–22. https://doi.org/10.1080/10584587.2014.905086 26. Dong, C. L., Persson, C., Vayssieres, L., Augustsson, A., Schmitt, T., Mattesini, M., Ahuja, R., Chang, C. L. & Guo, J. H. (2004). Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation. Physical Review B, 70(19), 195325. https://doi.org/10.1103/PhysRevB.70.195325 27. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. & Yang, P. (2001). Room-temperature ultraviolet nanowire nanolasers. science, 292(5523), 1897-1899. https://doi.org/10.1126/science.1060367 28. Clark, S. J., Robertson, J., Lany, S., & Zunger, A. (2010). Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals. Physical Review B, 81(11), 115311. https://doi.org/10.1103/PhysRevB.81.115311
29. Jain, V.K., Lakshmi, N., Jain, R. et al. Structural, Elastic, Electronic, Magnetic and Optical Properties of Spin Gapless Semiconducting Heusler Alloy Ti2FeSb Using First-Principles Calculations. J. Electron. Mater. 50, 5857–5867 (2021). https://doi.org/10.1007/s11664-021-09115-z
30. Jain, V.K., Lakshmi, N., Jain, R. & Chandra, A. R. (2017), Electronic structure, magnetic and optical properties of quaternary Fe2−x Co x MnAl Heusler alloys. J Mater Sci 52, 6800–6811. https://doi.org/10.1007/s10853-017-0918-8
31. Jain, V.K., Lakshmi, N., Jain, R. & Chandra, A. R. (2019), Electronic Structure, Elastic, Magnetic, and Optical Properties of Fe2MnZ (Z = Si, Ge, and Sn) Full Heusler Alloys: First-Principle Calculations. J Supercond Nov Magn 32, 739–749. https://doi.org/10.1007/s10948-018-4751–3


Conference Open Access Original Research
Volume 11
Special Issue 05
Received May 5, 2023
Accepted July 6, 2023
Published July 26, 2023