Utilization Waste Products as Reinforcement in Development of Composite Material: A Review

Year : 2022 | Volume : | Special Issue : 3 | Page : 46-56

    Prashant Sharma

  1. Assistant Professor, Department of Civil Engineering, GLA University Mathura, Uttar Pradesh, India


In the modern world, businesses are responsible for producing a diverse range of waste products. Rice husks and eggshells are two examples of wastes that fall into this category. Both of these types of garbage are responsible for contributing to pollution in a variety of distinct ways. Eggshell, which is a common consequence of industrial operations, is one of the most significant contributors to the contamination of soil. This is due to the fact that eggshell is a normal byproduct. Rice husk ash (RHA) is made up of waste products and byproducts that are generated by the agriculture industry. In this research, eggshell and RHA are used in concrete to enhance mechanical properties. Composites can have their reinforcing by weight percentage changed to boost their tensile and shear strengths. It has been asserted that RHA and eggshell can both be used with aluminium alloy in a variety of ways.

Keywords: Waste products eggshell, rice husk ash, stir-casting process, mechanical properties, composite materials

[This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)]

How to cite this article: Prashant Sharma Utilization Waste Products as Reinforcement in Development of Composite Material: A Review jopc 2022; 10:46-56
How to cite this URL: Prashant Sharma Utilization Waste Products as Reinforcement in Development of Composite Material: A Review jopc 2022 {cited 2022 Nov 20};10:46-56. Available from: https://journals.stmjournals.com/jopc/article=2022/view=105025

Browse Figures


  1. Hassan SB, Aigbodion VS. Effects of eggshell on the microstructures and properties of Al–Cu–Mg/eggshell particulate composites. J King Saud Univ. 2015;27:49-56.
  2. Toro P, Quijada R, Yazdani-Pedram M, Arias JL. Eggshell, a new bio-filler for polypropylene composites, MALLET 61 (2007). p. 4347-50.
  3. Chen X, Li C, Wang J, Li J, Luan X, Li Y et al. Investigation on solar photocatalytic activity of TiO2 loaded composite: TiO2/Eggshell, TiO2/Clamshell and TiO2/CaCO3. Materials Letters. 2010;64(13):1437-40. doi: 10.1016/j.matlet.2010.03.048.
  4. Ramli Sulong NH, Yew MK, Amalina MA, Johan MR, Eggshell: a novel bio-filler intumescent flame retardant coating, Organ. Coat. M.C. yew. 2015;81:116-24.
  5. Bootklad M, Kaewtatip K. Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydr Polym. 2013;97(2):315-20. doi: 10.1016/j.carbpol.2013.05.030.
  6. Hassan TA, Rangari VK, Rana RK, Jeelani S. Sonochemical effect on size reduction of CaCO3 nanoparticles derived from waste eggshells. Ultrason Sonochem. 2013;20(5):1308-15. doi: 10.1016/j.ultsonch.2013.01.016.
  7. Zhang J, Tan J, Tang W, Zhao Xilu, Zhu Y. Experimental and numerical collapse properties of externally pressurized egg-shaped shells under local geometrical imperfections, IJPVP 2019. doi: 10.1016/j. ijpvp.2019.04.006.
  8. Blachut J, Jaiswal OR. On buckling of toroidal shells under external pressure, Pergoman. 1999;77:233-51.
  9. Amu OO, Fajobi AB, Oke BO. Effect of eggshell powder on the stabilizing potential of lime on the expensive clay soil. J Appl Sci. 2005;5(8):1474-8. doi: 10.3923/jas.2005.1474.1478.
  10. Ayawanna J, Kingnoi N, Laorodphan N. A feasibility study of eggshell-derived porous glass–ceramic orbital implants. Mater Lett. 2019;241:39-42. doi: 10.1016/j.matlet.2019.01.040.
  11. Chaithanyasaia A, Vakchorea PR, Umasankara V. The micro structural and mechanical property study of effects of eggshell particles on the aluminum 6061. Procedia Eng. 2014;57:961-7.
  12. Khai ETS. Engineering properties of light weight foamed concrete with 7.5% eggshell as partial cement replacement, MATLETS. 2015;16:898-908.
  13. Hincke MT, Nys Y, Gautron J, Mann K, Rodriguez-Navarro AB, McKee MD. The eggshell: structure, composition and mineralization. Front Biosci (Landmark Ed). 2012;17(4):1266-80. doi: 10.2741/3985.
  14. Hunt JR, Voisey PW. Physical properties of eggshells, Animal Inst. Res. 1966 1398-404.
  15. Anumol S, Moideen F, Jose JK, Abraham A, Studies on improvement of clayey soil using egg shell powder and quarry dust. IJERA 4. Anu Paul. 2014;V:55-63.
  16. Yu-Xing L, Gui-Qin J, Xi-Wen H, Lang-Xing C, Yu-Kui Z. Preparation and application of core-shell structural carbon nanotubes-molecularly imprinted composite material for determination of nafcillin in egg samples LIU. Chin J Anal Chem. 2013;241:161-6.
  17. Lunge S, Thakre D, Kamble S, Labhsetwar N, Rayalu S. Alumina supported carbon composite material with exceptionally high defluoridation property from eggshell waste. J Hazard Mater. 2012;237-238:161-9. doi: 10.1016/j.jhazmat.2012.08.023.
  18. Mittal A, Teotia M, Soni RK, Mittal J. Applications of egg shell and egg shell membrane as adsorbents: a review. J Mol Liq. 2016;223:376-87. doi: 10.1016/j.molliq.2016.08.065.
  19. Rock L, Rowe S, Czerwiec A, Richmond H. Isotopic analysis of eggs: evaluating sample collection and preparation. Food Chem. 2013;136(3-4):1551-6. doi: 10.1016/j.foodchem.2012.03.041.
  20. Sonker N, Bajpai AKJ, Bajpai AM. Facile synthesis and characterization of iron oxide–egg albumin (IOEA) as core-shell nanoparticles and study of water intake potential, NANO-Struct. Nano-Obj. 2017;14:1-10.
  21. Tsai WT, Yang JM, Lai CW, Cheng YH, Lin CC, Yeh CW. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour Technol. 2006;97(3):488-93. doi: 10.1016/j.biortech.2005.02.050.
  22. Tu Q, Hickey ME, Yang T, Gao S, Zhang Q, Qu Y et al. A simple and rapid method for detecting the pesticide fipronil on eggshells and in liquid eggs by Raman microscopy. Food Control. 2019;96:16-21. doi: 10.1016/j.foodcont.2018.08.025.
  23. Severa L, Buchar J, Votava J. New approach of eggshell mechanical properties determination. Acta Univ Agric Silvic Mendelianae Brun. 2014;58(1):161-6. doi: 10.11118/actaun201058010161.
  24. Dwivedi SP, Sharma S, Mishra RK. Mechanical and metallurgical characterizations of z.
  25. Premalal HGB, Ismail H, Baharin A. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test. 2002;21(7):833-9. doi: 10.1016/S0142-9418(02)00018-1.
  26. Habeeb GA, Fayyadh MM. Rice husk ash concrete: the effect of RHA average particle size on mechanical properties and drying shrinkage. Aust J Basic Appl Sci. 2009;3(3):1616-22.
  27. Rukzon S, Chindaprasirt P, Mahachai R. Effect of grinding on chemical and physical properties of rice husk ash. Int J Miner Metall Mater. 2009;16(2):242-7. doi: 10.1016/S1674-4799(09)60041-8.
  28. Safiuddin Md, West JS, Soudki KA. Hardened properties of self-consolidating high performance concrete including rice husk ash. Cem Concr Compos. 2010;32(9):708-17. doi: 10.1016/j.cemconcomp.2010.07.006.
  29. Saravanan SD, Kumar MS. Effect of mechanical properties on rice husk ash reinforced aluminum alloy (AlSi10Mg) matrix composites. Procedia Eng. 2013;64:1505-13. doi: 10.1016/j.proeng.2013.09.232.
  30. Thomas BS. Green concrete partially comprised of rice husk ash as a supplementary cementitious material – a comprehensive review. Renew Sustain Energy Rev. 2018;82:3913-23. doi: 10.1016/j.rser.2017.10.081.
  31. Akeke GA, Ephraim ME, Akobo IZS, Ukpata JO. Structural properties of rice husk ash concrete, Ijeas. 2013;3:57-62.
  32. Vishwakarma V, Ramachandran D, Anbarasan N. Arul Maximus Rabel, Studies of rice husk ash nanoparticles on the mechanical and microstructural properties of the concrete. Mater Today Proc. 2016;3:1999-2007.
  33. Yogananda MR, Jagadish KS. Pozzolanic properties of rice husk ash, burnt clay and red mud. Build Environ. 1988;23(4):303-8. doi: 10.1016/0360-1323(88)90036-4.
  34. Liu S, Wang Yinwei, Muthuramalingam T, Anbuchezhiyan G. Effect of B4C and MOS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications, Compos; 2019 1–7. p. B176.
  35. Mariam M, Afendi M, Abdul Majid MSA, Ridzuan MJM, Sultan MTH, Jawaid M et al. Hydrothermal ageing effect on the mechanical behaviour and fatigue response of aluminium alloy/glass/epoxy hybrid composite single lap joints. Compos Struct. 2019;219:69-82. doi: 10.1016/j.compstruct.2019.03.078.
  36. Aribo S, Fakorede A, OladejiIge PO. Erosion-corrosion behaviour of aluminium alloy6063 hybrid composite. Wear. 2017;376:608-14.
  37. Prasad DS, Krishna AR. Tribological properties of A356.2/RHA composites. J Mater Sci Technol. 2012;28(4):367-72. doi: 10.1016/S1005-0302(12)60069-3.
  38. González-Doncel G, Sherby OD. High temperature creep behavior of metal matrix Aluminum SiC composites. Acta Metall Mater. 1993;41(10):2797-805. doi: 10.1016/0956-7151(93)90094-9.
  39. Lin JT, Bhattacharyya D, Lane C. Machinability of a silicon carbide reinforced aluminium metal matrix composite, Wear(Case Study). 1995;181-183:883-8.
  40. Logsdon WA, Liaw PK. Tensile, fracture toughness and fatigue crack growth rate properties of silicon carbide whisker and particulate reinforced aluminum metal matrix composites. Eng Fract Mech. 1986;24(5):737-51. doi: 10.1016/0013-7944(86)90246-8.
  41. McDanels DL. Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement. Metall Trans. 1985;16(6):1105-15. doi: 10.1007/BF02811679.
  42. Nair SV, Tien JK, Bates RC. SiC-reinforced aluminium metal matrix composites. Int Met Rev. 1985;30(6):275-90.
  43. Srivatsan TS, Al-Hajri M, Smith C, Petraroli M. The tensile response and fracture behavior of 2009 aluminum alloy metal matrix composite. Mater Sci Eng. 2003;346(1-2):91-100. doi: 10.1016/S0921-5093(02)00481-1.
  44. Srivatsan TS. Processing techniques for particulate-reinforced metal aluminium matrix composites, JMS. 1991;26:5965-78.
  45. Veeresh Kumar GB, Rao CSP, Selvaraj N, Bhagyashekar MS. Studies on Al6061-SiC and Al7075-Al2O3 metal matrix composites, JMMCE (J. Miner Mater Charact Eng. 2010;9(1):43-55.
  46. Suryakumari TSA, Ranganathan S. Preparation and study the wear behaviour of aluminium hybrid composite. Mater Today Proc. 2018;5(2):8104-11. doi: 10.1016/j.matpr.2017.11.497.
  47. Trzaskoma PP. Pit morphology of aluminum alloy and silicon carbide/aluminum alloy metal matrix composites, Natl. Assoc Corros Eng. 1990;46:402-9.
  48. Uzun H. Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite. Mater Des. 2007;28(5):1440-6. doi: 10.1016/j.matdes.2006.03.023.
  49. Wang X, Jha A, Brydson R. In situ fabrication of Al3Ti particle reinforced aluminium alloy metal–matrix composites. Mater Sci Eng A. 2004;364(1-2):339-45. doi: 10.1016/j.msea.2003.08.049.
  50. Yar AA, Montazerian M, Abdizadeh H, Baharvandi HR. Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nanoparticle MgO. J Alloys Compd. 2009;484(1-2):400-4. doi: 10.1016/j.jallcom.2009.04.117.
  51. Kang CG, Bae JW, Kim BM. The grain size control of A356 aluminum alloy by horizontal electromagnetic stirring for rheology forging. J Mater Process Technol. 2007;187-188:344-8. doi: 10.1016/j.jmatprotec.2006.11.181.
  52. Li J, Li F, Wu S, Lü S, Guo W, Yang X. Variation of microstructure and mechanical properties of hybrid particulates reinforced Al-alloy matrix composites with ultrasonic treatment. J Alloys Compd. 2019;789:630-8. doi: 10.1016/j.jallcom.2019.03.074.
  53. Hurtalová L, Tillová E, Chalupová M, E. Dˇ uriníková. Effect of chemical composition of secondary Al-Si cast alloy on intermetallic phases. In: Scientific. Proceedings of the 9th international congress machines, technologies, materials; 2012, ISSN 1310-3946.
  54. Prasad DS, A Dr, Krishna R. Production and mechanical properties of A356.2/RHA composites. Int J Adv Sci Technol. 2011;33:51-8.
  55. Engin B, Demirtaş H. The use of ESR spectroscopy for the investigation of dosimetric properties of egg shells. Radiat Phys Chem. 2004;71(6):1113-23. doi: 10.1016/j.radphyschem.2003.12.053.
  56. Kaczmar JW, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Technol. 2000;106(1-3):58-67. doi: 10.1016/S0924-0136(00)00639-7.
  57. Hashim J, Looney L, Hashmi MSJ. Metal matrix composites: production by the stir casting method. J Mater Process Technol. 1999;92-93:1-7. doi: 10.1016/S0924-0136(99)00118-1.
  58. Dwivedi SP, Maurya NK, Maurya M. Effect of uncarbonized eggshell weight percentage on mechanical properties of composite material developed by electromagnetic stir casting technique. Revue des Composites et des Matériaux Avancés. 2019;29(2):101-7. doi: 10.18280/rcma.29020529.
  59. Dwivedi SP, Sharma S, Mishra RK. Tribological behavior of a newly developed AA2014/waste eggshell/SiC hybrid green MMC at optimum parameters. J Eng Manuf. 2016;7:48-60.
  60. Prabu SB, Karunamoorthy L, Kathiresan S, Mohan B. Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J Mater Process Technol. 2006;171(2):268-73. doi: 10.1016/j.jmatprotec.2005.06.071.
  61. Li L, Zhou RF, Cen Q, Lu D, Jiang Y, Zhou R. Effect of Cooling Rate on the Microstructure of Semi-Solid Al–25Si–2Fe Alloy During Electromagnetic Stirring. Trans Indian Inst Met. 2013;66(2):163-9. doi: 10.1007/s12666-012-0239-1.
  62. Dwivedi SP, Sharma S, Mishra RK. A comparative study of waste eggshells, CaCO3, and SiC-reinforced AA2014 green metal matrix composites. J Compos Mater. 2017;51(17):2407-21. doi: 10.1177/0021998316672295.
  63. Hasibul Haque Md, Ramin Ahmed Md, Khan M, Shahriar S. Fabrication, reinforcement and characterization of metal matrix composites (MMCs) using rice husk ash and aluminium alloy (A-356.2), IJSER. 2016;7(3):28-35.
  64. Chintada S, Dora SP, Prathipati Raju. Investigations on the machinability of Al/SiC/RHA hybrid metal matrix composites. Silicon. 2019;11(6):2907-18. doi: 10.1007/s12633-019-0080-9.
  65. Hong S-J, Kim H-M, Huh D, Suryanarayana C, Chun BS. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater Sci Eng. 2003;347(1-2):198-204. doi: 10.1016/S0921-5093(02)00593-2.
  66. Singla M, Dwivedi DD, Singh L, Chawla V. Development of aluminium based silicon carbide particulate metal matrix composite, JMMCE. 2009;8(6):455-67.
  67. Lloyd DJ. Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev. 1994;39(1):1-23. doi: 10.1179/imr.1994.39.1.1.
  68. Hosking FM, Portillo FF, Wunderlin R, Mehrabian R. Composites of aluminium alloys: fabrication and wear behaviour. J Mater Sci. 1982;17(2):477-98. doi: 10.1007/BF00591483.
  69. Dwivedi SP, Dixit A, Bajaj R. Development of bio-composite material by utilizing chrome containing leather waste with Al 2 O 3 ceramic particles. Mater Res Express. 2019;6(10):105105. doi: 10.1088/2053-1591/ab3f8e.
  70. Shashi Prakash Dwivedi, V. R. Mishra, Ashok Kumar Mishra. Effect of MgO addition on physico-chemical, mechanical and thermal behaviour of Al/Si3N4 composite material developed via hybrid casting technique. J Ceram Process Res. 2019;20(6):632-42. doi: 10.36410/jcpr.2019.20.6.632.
  71. Dwivedi SP. Effect of ball-milled MgO and Si3N4 addition on the physical, mechanical and thermal behaviour of aluminium based composite developed by hybrid casting technique. Int J Cast Met Res. 2020;33(1):35-49. doi: 10.1080/13640461.2020.1744370.
  72. Yadav R, Dwivedi SP, Dwivedi VK, Islam A. Microstructure and mechanical testing of Al/graphite/Fly-ash metal matrix composite material. World J Eng. 2021.
  73. Yadav R, Dwivedi SP, Dwivedi VK. Synthesis and mechanical behavior of ball-milled agro-waste RHA and eggshell reinforced composite material. Mater Perform Char. 2021;10(1):237-54. doi: 10.1520/MPC20190247.
  74. Dwivedi SP, Maurya M, Maurya NK, Srivastava AK, Sharma S, Saxena A. Utilization of groundnut shell as reinforcement in development of aluminum-based composite to reduce environment pollution: a review, Evergreen Joint J. Novel Carbon Resour. Sci. Green Asia Strategy. 2020;07(01):15-25.

Special Issue Subscription Review Article
Volume 10
Special Issue 3
Received October 3, 2022
Accepted October 28, 2022
Published November 20, 2022