Analysis of new Floating Offshore Wind Turbine under drag force operation

Year : 2024 | Volume :11 | Issue : 01 | Page : 1-10
By

Carlos Armenta Déu

Diego Piqueras Sanz

Abstract

The goal of this paper is the study and analysis of a new type of floating offshore wind turbine (FOWT), which operates under drag force instead of lifting force as the conventional FOWT. We simulate the wind turbine operation modifying the pitch angle to faithfully reproduce the behavior when submitted to waves’ movement. The analysis of the wind turbine performance is developed in a model at laboratory scale to control the power generation under variable operating conditions. Tests run for variable wind speed in the available wind tunnel range, from 0 to 72 km/h. We determine the efficiency of the new wind turbine model determining the output power for setup wind speed, and comparing the results with those obtained from a conventional model, lifting type, of similar characteristics under identical operating conditions. The tests results show that the optimum pitch angle, which generates the maximum output power, does not match the one for highest mechanical efficiency. The simulation results also show that floating offshore wind turbines operating under drag force is an interesting option to complement the conventional FOWT in a marine park since they can be intercalated reducing the wake effects and supplying additional power.

Keywords: Wind energy. Floating Offshore Wind Turbines. Pitch angle. Power generation. Drag forces.

[This article belongs to Journal of Offshore Structure and Technology(joost)]

How to cite this article: Carlos Armenta Déu, Diego Piqueras Sanz. Analysis of new Floating Offshore Wind Turbine under drag force operation. Journal of Offshore Structure and Technology. 2024; 11(01):1-10.
How to cite this URL: Carlos Armenta Déu, Diego Piqueras Sanz. Analysis of new Floating Offshore Wind Turbine under drag force operation. Journal of Offshore Structure and Technology. 2024; 11(01):1-10. Available from: https://journals.stmjournals.com/joost/article=2024/view=151173

References

[1] L. Castro-Santos & V. Diaz-Casas, (Eds.). Floating offshore wind farms (p. 204). Cham, Switzerland: Springer International Publishing (2016).
[2] V. Pérez Alonso, Caracterización de Turbinas Flotantes. Comparación con Aerogeneradores Terrestres, Grupo de Energías Renovables. Facultad de Físicas. Universidad Complutense de Madrid. Trabajo Fin de Máster. 2020.
[3] S. D. L. SALLE, D. Reardon, W. E. Leithead & M. J. GRlMBLE, Review of wind turbine control. International Journal of Control, Volume 52, Issue 6, pages 1295-1310 (1990).
[4] Apata, O., & Oyedokun, D. T. O. (2020). An overview of control techniques for wind turbine systems. Scientific African, 10, e00566.
[5] Bianchi, F. D., De Battista, H., & Mantz, R. J. (2007). Wind turbine control systems: principles, modelling and gain scheduling design (Vol. 19). London: Springer.
[6] SALLE, S. D. L., Reardon, D., Leithead, W. E., & GRlMBLE, M. J. (1990). Review of wind turbine control. International Journal of control, 52(6), 1295-1310.
[7] Namik, H., & Stol, K. (2010). Individual blade pitch control of floating offshore wind turbines. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 13(1), 74-85.
[8] Namik, H., & Stol, K. (2013). Individual blade pitch control of a spar-buoy floating wind turbine. IEEE transactions on control systems technology, 22(1), 214-223.
[9] Fazylova, A., Tultayev, B., Iliev, T., Stoyanov, I., & Beloev, I. (2023). Development of a Control Unit for the Angle of Attack of a Vertically Axial Wind Turbine. Energies, 16(13), 5202.
[10] Leithead, W. E., & Connor, B. (2000). Control of variable speed wind turbines: Design task. International Journal of Control, 73(13), 1189-1212.
[11] Aubrun, S., Leroy, A., & Devinant, P. (2017). A review of wind turbine-oriented active flow control strategies. Experiments in Fluids, 58, 1-21.
[12] J. Orszaghova, P. H. Taylor, H. A. Wolgamot, F. J. Madsen, A. M. Pegalajar-Jurado & H. Bredmose, Wave-and drag-driven subharmonic responses of a floating wind turbine. Journal of Fluid Mechanics, Volume 929 (2021).
[13] L.Zhang, W. Shi, M. Karimirad, C. Michailides & Z. Jiang, Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines. Ocean Engineering, Volume 207, 107371 (2020).
[14] D. Yin, E. Passano, F. Jiang, H. Lie, J.u, N.Ye & B. J. Leira, State-of-the-Art Review of Vortex-Induced Motions of Floating Offshore Wind Turbine Structures. Journal of Marine Science and Engineering, Volume 10, Issue 8, page 1021 (2022).
[15] Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2010). Wind energy explained: theory, design and application. John Wiley & Sons.
[16] Armenta-Déu. C., Racouchot, N. (2021) Modelling of Wind-Wave Misalignment for Floating Off-Shore Wind Turbine. Journal of Offshore Structure and Technology, Volume 8, Issue 2, pages 18-35
[17] Armenta-Déu, C. (2023) A Model to Predict Angular Phase Shift between Wind and Waves for FOWT Applications. Journal of Offshore Structure and Technology, Volume 10, Issue 11, pages 1-12
[18] Armenta-Déu, C., Lomo, J. (2022) Wave Effects on the Performance of Giant Floating Offshore Wind Turbines. Journal of Offshore Structure and Technology, Volume 9, Issue 2, pages 6-17
[19] Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook. John Wiley & Sons.
[20] Stoevesandt, B., Schepers, G., Fuglsang, P., & Sun, Y. (Eds.). (2022). Handbook of wind energy aerodynamics. Springer Nature.


Regular Issue Subscription Original Research
Volume 11
Issue 01
Received May 10, 2024
Accepted May 20, 2024
Published May 21, 2024