Harnessing the Potential of Virtual Instrumentation

[{“box”:0,”content”:”[if 992 equals=”Open Access”]n

n

n

n

Open Access

nn

n

n[/if 992]n

n

Year : June 14, 2024 at 4:16 pm | [if 1553 equals=””] Volume :10 [else] Volume :10[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : 01 | Page : 1-15

n

n

n

n

n

n

By

n

[foreach 286]n

n

n

Krishnapriya M, Farsana Muhammed

n

    n t

  • n

n

n[/foreach]

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. MTech Scholar,, Assistant Professor, Department of Electrical & Electronics Engineering, TKMCE,, Department of Electrical & Electronics Engineering, TKMCE, Kollam,, Kollam, India, India
  2. n[/if 1175][/foreach]

n[/if 2099][if 2099 equals=”Yes”][/if 2099]n

n

Abstract

nThe Virtual Instrument (VI) uses custom software and hardware to create a user-defined measurement system, called a Virtual Instrument. Virtual instruments are similar to traditional instruments, such as multimeters, oscilloscopes, spectrum analyzers, and data acquisition systems. It has great flexibility, high performance, flexibility and low cost. Primarily, it consists of a personal computer or workstation, and Vi software such as LabVIEW, NI DAQmx, and MATLAB. This modular hardware includes data acquisition boards, signal conditioners, actuators, and finally, running software, which is used to let the VI software communicate with the hardware, according to the smart algorithms in the virtual system Through integrating so, it can clarify how these algorithms contribute to real-time data acquisition, analysis, and control strategies. This paper explores the use of VI, in different industries and its fusion with intelligent systems and automation, aiming to show that virtual instrumentation integrated with intelligent systems emerged as a modern automation cornerstone, which revolutionized industries and these industries’ manufacturing. In VI-based automation technologies, which also explore the integration of smart-virtual instrumentation in areas such as transportation and environmental control, the paper presents an emphasis on development and improvement opportunities.

n

n

n

Keywords: VI (Virtual Instrumentation), LabVIEW(Laboratory Virtual Instrument Engineering Workbench), MATLAB(matrix laboratory), wire electrical discharge machining (WEDM), High Voltage Power Devices (HVPD),Virtual Instrumentation System(VIS)

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Microwave Engineering and Technologies(jomet)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Microwave Engineering and Technologies(jomet)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Krishnapriya M, Farsana Muhammed. Harnessing the Potential of Virtual Instrumentation. Journal of Microwave Engineering and Technologies. June 15, 2024; 10(01):1-15.

n

How to cite this URL: Krishnapriya M, Farsana Muhammed. Harnessing the Potential of Virtual Instrumentation. Journal of Microwave Engineering and Technologies. June 15, 2024; 10(01):1-15. Available from: https://journals.stmjournals.com/jomet/article=June 15, 2024/view=0

nn[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] n[if 992 not_equal=”Open Access”]

[/if 992]n[if 992 not_equal=”Open Access”] n


nn[/if 992]nn[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

n

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

1. Portillo, E., Cabanes, I., Marcos, M., Orive, D., & Sánchez, J. A. (2007). Design of a virtual instrumentation system for a machining process. IEEE Transactions on Instrumentation and Measurement, 56(6), 2616-2622.

2. Kumar, N. J., George, B., & Sivaprakasam, M. (2018). Virtual instrumentation system with real-time visual feedback and needle position warning suitable for ophthalmic anesthesia training. IEEE Transactions on Instrumentation and Measurement, 67(5), 1111-1123.

3. Bilski, P., & Winiecki, W. (2004, May). Time optimization of soft real-time virtual instrument design. In Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No. 04CH37510) (Vol. 3, pp. 2223-2228). IEEE.

4. Wang, C., & Gao, R. X. (2000). A virtual instrumentation system for integrated bearing condition monitoring. IEEE Transactions on Instrumentation and Measurement, 49(2), 325-332.

5. Young, C. P., Juang, W. L., & Devaney, M. J. (2000). Real-time intranet-controlled virtual instrument multiple-circuit power monitoring. IEEE Transactions on Instrumentation and Measurement, 49(3), 579-584.

6. Karmakar, S. (2016). Virtual-instrument-based online monitoring system for hands-on laboratory experiments of partial discharges. IEEE Transactions on Education, 60(1), 29-37.

7. Melo, T. R., Neto, J. D. R., & Silva, J. J. (2021). Integration of virtual instrumentation in the teaching of data acquisition and interface systems course. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 16(2), 154-160.

8. Fortuna, L., Giannone, P., Graziani, S., & Xibilia, M. G. (2007). Virtual instruments based on stacked neural networks to improve product quality monitoring in a refinery. IEEE Transactions on Instrumentation and Measurement, 56(1), 95-101.

9. Liu, C., Guo, Z., Feng, Y., Hong, F., & Jing, W. (2017). CPCA: The cloud platform of complex virtual instruments system architecture. IEEE Access, 5, 4350-4360.

10. Xue, T., Qu, L., & Wu, B.. Matching and 3-D reconstruction of multibubbles based on virtual stereo vision. IEEE Transactions on Instrumentation and Measurement, (2013)-63(6), 1639-1647

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””]Regular Issue[else]Published[/if 424] Subscription Review Article

n

n

n

n

n

Journal of Microwave Engineering and Technologies

n

[if 344 not_equal=””]ISSN: 2349-9001[/if 344]

n

n

n

n

n

[if 2146 equals=”Yes”][/if 2146][if 2146 not_equal=”Yes”][/if 2146]n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 1748 not_equal=””]

[else]

[/if 1748]n

n

n

Volume 10
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] 01
Received May 23, 2024
Accepted May 27, 2024
Published June 15, 2024

n

n

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]