Enhancing Compressive Strength and Durability through Optimization of Concrete Mixtures

[{“box”:0,”content”:”[if 992 equals=”Open Access”]

n

Open Access

n

[/if 992]n

n

Year : April 12, 2024 at 3:01 pm | [if 1553 equals=””] Volume : [else] Volume :[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : | Page : –

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Yash Dangi, Harsh Rathore

  1. [/foreach]

    n

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Student, Assistant Professor, Department of Civil Engineering, Sanjeev Agarwal Global Educational University, Bhopa, Sanjeev Agarwal Global Educational University, Bhopal,, Madhya Pradesh, Madhya Pradesh, India, India
  2. n[/if 1175][/foreach]

[/if 2099][if 2099 equals=”Yes”][/if 2099]nn

n

Abstract

nThis research investigates how varying cement-aggregate ratio, water-cement ratio, and slump height affect the compressive strength of concrete mixtures. Through an analysis of 36 samples, each representing different combinations of these parameters, significant insights are gained into the optimization of concrete mix designs for construction applications. The study reveals that higher water-cement ratios tend to decrease compressive strength due to increased porosity in cured concrete. Conversely, higher cement-aggregate ratios generally lead to higher compressive strengths, up to a certain point, after which excessive cement content may result in issues such as shrinkage and cracking. Additionally, the impact of slump height on compressive strength is elucidated, with higher slump heights typically associated with lower strengths due to increased water content. These findings underscore the importance of carefully balancing these parameters to achieve desired concrete performance. By optimizing mix designs based on these insights, engineers and practitioners can ensure the construction of durable and resilient concrete structures, thus advancing the field of concrete technology and improving construction practices.

n

n

n

Keywords: Concrete Mixtures, Compressive Strength, Cement-Aggregate Ratio, Water-Cement Ratio, Slump Height

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Geotechnical Engineering(joge)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Geotechnical Engineering(joge)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Yash Dangi, Harsh Rathore Enhancing Compressive Strength and Durability through Optimization of Concrete Mixtures joge April 10, 2024; :-

n

How to cite this URL: Yash Dangi, Harsh Rathore Enhancing Compressive Strength and Durability through Optimization of Concrete Mixtures joge April 10, 2024 {cited April 10, 2024};:-. Available from: https://journals.stmjournals.com/joge/article=April 10, 2024/view=0

n


n[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] nn

n[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

1. Yeh, I. C. (2020). Modeling of strength of high-performance concrete using artificial neural networks. Cement and Concrete research, 28(12), 1797-1808.
2. Topcu, I. B., & Sarıdemir, M. (2016). Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Computational Materials Science, 41(3), 305-311.
3. Lee, S. C. (2014). Prediction of concrete strength using artificial neural networks. Engineering Structures, 25(7), 849-857.
4. Uysal, M., & Tanyildizi, H. (2012). Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Construction and Building Materials, 27(1), 404-414.
5. Naderpour, H., Kheyroddin, A., & Amiri, G. G. (2010). Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures, 92(12), 2817-2829.
6. Bilgehan, M., & Turgut, P. (2010). Artificial neural network approach to predict compressive strength of concrete through ultrasonic pulse velocity. Research in Nondestructive Evaluation, 21(1), 1-17.
7. Trtnik, G., Kavčič, F., & Turk, G. (2009). Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics, 49(1), 53-60.
8. Özcan, F., Atiş, C. D., Karahan, O., Uncuoğlu, E., & Tanyildizi, H. (2009). Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Advances in Engineering Software, 40(9), 856-863.
9. Bilim, C., Atiş, C. D., Tanyildizi, H., & Karahan, O. (2009). Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Advances in Engineering Software, 40(5), 334-340.
10. Prasad, B. R., Eskandari, H., & Reddy, B. V. (2009). Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Construction and Building Materials, 23(1), 117-128.
11. Altun, F., Kişi, Ö., & Aydin, K. (2008). Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Computational Materials Science, 42(2), 259-265.
12. Öztaş, A., Pala, M., Özbay, E., Kanca, E., Çagˇlar, N., & Bhatti, M. A. (2008). Predicting the compressive strength and slump of high strength concrete using neural network. Construction and Building Materials, 20(9), 769-775.
13. Zarandi, M. F., Türksen, I. B., Sobhani, J., & Ramezanianpour, A. A. (2008). Fuzzy polynomial neural networks for approximation of the compressive strength of concrete. Applied Soft Computing, 8(1), 488-498.
14. Hoła, J., & Schabowicz, K. (2007). Application of artificial neural networks to determine concrete compressive strength based on non‐destructive tests. Journal of civil Engineering and Management, 11(1), 23-32.
15. Pala, M., Özbay, E., Öztaş, A., & Yuce, M. I. (2007). Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Construction and Building Materials, 21(2), 384-394.
16. Kewalramani, M. A.,& Gupta, R. (2006). Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Automation in Construction, 15(3), 374-379.
17. Kasperkiewicz, J., Racz, J., & Dubrawski, A. (1995). HPC strength prediction using artificial neural network. Journal of Computing in Civil Engineering, 9(4), 279-284.
18. Ghaboussi, J., Garrett Jr, J. H., & Wu, X. (1991). Knowledge-based modeling of material behavior with neural networks. Journal of Engineering Mechanics, 117(1), 132-153.
19. Prediction of compressive strength of concrete by neural networks. Cement and Concrete Research, 30(8), 1245-1250.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””][else]Ahead of Print[/if 424] Subscription Original Research

n

n

n

n

n

Journal of Geotechnical Engineering

n

[if 344 not_equal=””]ISSN: 2394-1987[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 2146 equals=”Yes”]

[/if 2146][if 2146 not_equal=”Yes”]

[/if 2146]n

n

n

Volume
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424]
Received April 1, 2024
Accepted April 8, 2024
Published April 10, 2024

n

n

n

n

n

n

nn function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]