Quantum Error Correction on Cryptography

[{“box”:0,”content”:”[if 992 equals=”Open Access”]

n

Open Access

n

[/if 992]n

n

Year : April 5, 2024 at 2:43 pm | [if 1553 equals=””] Volume :15 [else] Volume :15[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : 01 | Page : –

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Sanjeev Patwa, Tamanna, Tejal Kumawat

  1. [/foreach]

    n

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Associate Professor, Student, Student, Department of Computer Science and Engineering, Mody University of Science and Technology Lakshmangar, Department of Computer Science and Engineering, Mody University of Science and Technology Lakshmangarh, Department of Computer Science and Engineering, Mody University of Science and Technology Lakshmangarh, Rajasthan, Rajasthan, Rajasthan, India, India, India
  2. n[/if 1175][/foreach]

[/if 2099][if 2099 equals=”Yes”][/if 2099]nn

n

Abstract

nThis research introduces novel concepts in quantum error correction and cryptography. It explores “approximate quantum error correction” (AQEC), which relaxes the requirement for perfect error correction in quantum systems. AQEC specializes in creating codes tailored to specific types of noise models. The study establishes a universal, near-optimal recovery map for AQEC, simplifying the identification of effective approximate codes.
In the realm of noisy-storage cryptography, the research envisions secure two-party cryptographic protocols in the presence of noisy and bounded quantum storage devices. These protocols remain secure, even when a dishonest party can store most information with a noiseless quantum memory, pushing the limits of quantum noisy-storage models. Furthermore, the research explores entropic uncertainty relations involving symmetric complementary bases, a critical aspect in assessing the security of quantum cryptographic protocols. It introduces sets of symmetric, complementary bases, offering new lower bounds for uncertainty relations, with precise bounds for specific cases. Furthermore, the research explores the integration of error correction and authentication in quantum cryptography, proposing the “threshold code.” This code efficiently combines error correction and authentication, offering enhanced security and practicality in quantum communication.

n

n

n

Keywords: quantum error correction, approximate quantum error correction, noisy-storage cryptography, entropic uncertainty relations, symmetric complementary bases, quantum data locking, cryptographic protocols, threshold code, quantum key distribution, security, quantum noisy-storage model.

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Computer Technology & Applications(jocta)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Computer Technology & Applications(jocta)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Sanjeev Patwa, Tamanna, Tejal Kumawat Quantum Error Correction on Cryptography jocta April 5, 2024; 15:-

n

How to cite this URL: Sanjeev Patwa, Tamanna, Tejal Kumawat Quantum Error Correction on Cryptography jocta April 5, 2024 {cited April 5, 2024};15:-. Available from: https://journals.stmjournals.com/jocta/article=April 5, 2024/view=0

n


n[if 992 equals=”Open Access”] Full Text PDF Download[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘Full Text PDF‘);n }nelse if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }nelse if (fieldValue == ‘jocta’) { document.write(‘Full Text PDF‘); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Gottesman, D. (1997). Stabilizer Codes and Quantum Error Correction. Caltech Ph.D. thesis.
  2. Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
  3. Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4), R2493.
  4. Preskill, J. (1998). Reliable quantum computers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1969), 385-410.
  5. Aharonov, D., Kitaev, A., & Nisan, N. (1998). Quantum circuits with mixed states. Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, 20-30.
  6. Tuckett, D., & Bartlett, S. D. (2018). Fault tolerance in quantum error correction. Physical Review A, 97(3), 032308.
  7. Calderbank, A. R., Shor, P. W. (1996). Good quantum error-correcting codes exist. Physical Review A, 54(2), 1098.
  8. Wootton, J. R., Loss, D. (2018). Surface codes with three qubits. Physical Review A, 97(6), 062312.
  9. Terhal, B. M., Burkard, G. (2005). Fault-tolerant quantum computation for local non-Markovian noise. Physical Review A, 71(1), 012336.
  10. Gheorghiu, V., Kashefi, E. (2019). Quantum cryptography beyond quantum key distribution. Nature Reviews Physics, 1(1), 94-104.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””]Regular Issue[else]Published[/if 424] Subscription Review Article

n

n

n

n

n

Journal of Computer Technology & Applications

n

[if 344 not_equal=””]ISSN: 2229-6964[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 2146 equals=”Yes”]

[/if 2146][if 2146 not_equal=”Yes”]

[/if 2146]n

n

n

Volume 15
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] 01
Received November 24, 2023
Accepted December 13, 2023
Published April 5, 2024

n

n

n

n

n

n

nn function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]