Perspectives on ‘Kamsaharitaki’: an Ayurvedic Formulation for COVID-19 related Multisystem Inflammatory Syndrome (MIS)

Open Access

Year : 2023 | Volume :11 | Issue : 1 | Page : 28-39
By

Vaibhav Bapat

Anup Pande

Sagar Narode

Surendra Vedpathak

  1. Panchakarma Vaidya Department of Panchakarma National Institute of Ayurveda, Deemed to be University Rajasthan India
  2. Associate Professor Department of RSBK, Ayurveda Mahavidyalaya and Hospital, Risod, Dist-Washim Maharashtra India

Abstract

Background and Aim: Angiotensin-converting enzyme 2 receptor (ACE2), together with Transmembrane protease serine 2 (TMPRSS2), is a protein receptor for SARS-CoV-2 virus in the host subject; expression of ACE2 and TMPRSS2 reveals the multidimensional character of COVID-19 infection. SARS-CoV-2 Prominently induces pulmonary and systemic injury with other synergistic mechanisms. Preexisting chronic inflammatory conditions markedly sustain and aggravate the severity and cytokine storm. Inflammatory responses are closely linked with COVID-19 severity and complications. Role of Reactive oxygen species (ROS) is crucial and owing the demand of polyherbal combinations with antioxidant potential for their preventive and therapeutic aspects. Ayurveda intended to develop potential immune mechanism in the host while dealing with infectious diseases. ‘Kamsaharitaki’ a polyherbal formulation predominantly indicated in inflammatory conditions targeting multiple systems is found to be most appropriate to restrain Multisystem inflammatory syndrome (MIS) associated with COVID 19. To support and establish this; phytopharmacological exploration is decisive. Methodology: A keen exploration of in vitro, in vivo studies with electronically published data limited to Pubmed search engine interrelated to phytochemicals and pharmacological properties of each solitary herb along with predefined groups of herbs constituting this formulation is carried out. Results and Conclusion: This revealed presence of numerous phytochemicals with comparable pharmacological properties. Dashmula (group of 10 herbs of this formulation) illustrated statistically significant anti-inflammatory, antioxidant and anti-platelet (P < 0.05) potentials.

Keywords: Ayurveda, Sars-CoV-2, MIS, cytokine, Phytopharmacology, Herbal.

[This article belongs to Journal of AYUSH: Ayurveda, Yoga, Unani, Siddha and Homeopathy(joayush)]

How to cite this article: Vaibhav Bapat, Anup Pande, Sagar Narode, Surendra Vedpathak. Perspectives on ‘Kamsaharitaki’: an Ayurvedic Formulation for COVID-19 related Multisystem Inflammatory Syndrome (MIS). Journal of AYUSH: Ayurveda, Yoga, Unani, Siddha and Homeopathy. 2023; 11(1):28-39.
How to cite this URL: Vaibhav Bapat, Anup Pande, Sagar Narode, Surendra Vedpathak. Perspectives on ‘Kamsaharitaki’: an Ayurvedic Formulation for COVID-19 related Multisystem Inflammatory Syndrome (MIS). Journal of AYUSH: Ayurveda, Yoga, Unani, Siddha and Homeopathy. 2023; 11(1):28-39. Available from: https://journals.stmjournals.com/joayush/article=2023/view=89966

Full Text PDF Download

Browse Figures

References

1. Behrens E.M., Koretzky G.A. Review: cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheum. 2017;69:1135–1143. doi: 10.1002/art.40071.
2. Godfred-Cato S, Bryant B, Leung J, Oster ME, Conklin L, Abrams J et. Al COVID-19-Associated Multisystem Inflammatory Syndrome in Children – United States, March-July 2020. MMWR Morb Mortal Wkly Rep. 2020 Aug 14; 69(32):1074-1080.
3. Morris S.B. Case series of multisystem inflammatory syndrome in adults associated with SARS-CoV-2 infection – United Kingdom and United States, March-August 2020. MMWR Morb Mortal Wkly Rep. 2020;69(40):1450–1456.
4. World Health Organization COVID-19 and NCDs. [(accessed on 23 March 2020)]; Available online: https://www.who.int/internal-publications-detail/covid-19-and-ncds.
5. Varga Z., Flammer A.J., Steiger P. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418.
6. Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression Adv Biol Regul. 2020 Aug; 77: 100741.
7. Wu J, Deng W, Li S, Yang X. Advances in research on ACE2 as a receptor for 2019-nCoV Cell Mol Life Sci. 2020 Aug 11 : 1–14. doi: 10.1007/s00018-020-03611-x
8. Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression Adv Biol Regul. 2020 Aug; 77: 100741.
9. Cecchini R Cecchini A L SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression Med Hypotheses. 2020 Oct; 143: 110102.
10. Feghali CA, Wright TM Cytokines in acute and chronic inflammation. Front Biosci. 1997 Jan 1; 2():d12-26.
11. Wellen K E, Hotamisligil G S. Inflammation, stress, and diabetes. J Clin Invest. 2005 May; 115(5):1111-9.
12. Zuo W., Zhao X., Chen Y G. SARS Coronavirus and Lung Fibrosis. In: Lal S.K., editor. Molecular Biology of the SARS-Coronavirus. Springer; Berlin/Heidelberg, Germany: 2010. pp. 247–258.
13. Naik PK, Moore BB Viral infection and aging as cofactors for the development of pulmonary fibrosis. Expert Rev Respir Med. 2010 Dec; 4(6):759-71.
14. Tolba M, Omirah M A, Hussain A, Saeed H Assessment and Characterization of Post‐COVID‐19 manifestations Wiley public health emergency collection doi: 10.1111/ijcp.13746
15. Schonrih G et al Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression Adv Biol Regul. 2020 Aug; 77: 100741.
16. Siddiqi H. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020;39:405–407.
17. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034.
18. Tripathi B. Caraka Samhita. Chaukhamba Surbharati, Varanasi, India, pp. 676, 2004.
19. Tripathi B. Caraka Samhita. Chaukhamba Surbharati, Varanasi, India, pp. 387, 2004.
20. Tripathi B. Caraka Samhita. Chaukhamba Surbharati, Varanasi, India, pp. 386, 2004.
21. Tripathi B. Caraka Samhita. Chaukhamba Surbharati, Varanasi, India, pp. 366, 2004.
22. Bhisagacharya S. Kasyapa samhita. Chaukhambha Sanskrit Sansthan, Varanasi, India, pp. 340, 2006.
23. Paradkar S S. Astangahrdaya. Chaukhamba Surbharati, Varanasi, India, pp. 7, 2007.
24. Tripathi B. Caraka Samhita. Chaukhamba Surbharati, Varanasi, India, pp. 937, 2004.
25. Sumantran VN, Tillu G. Cancer, Inflammation, and Insights from Ayurveda Evid Based Complement Alternat Med. 2012; 2012: 306346 Published online 2012 Jul 4. doi: 10.1155/2012/306346
26. Sumantran VN, Tillu G. Cancer, Inflammation, and Insights from Ayurveda Evid Based Complement Alternat Med. 2012; 2012: 306346 Published online 2012 Jul 4. doi: 10.1155/2012/306346
27. Sharma R, Martins N, Kuca K, et al. Chyawanprash: A Traditional Indian Bioactive Health Supplement Biomolecules. 2019 May; 9(5): 161.
28. Patwardhan B, Kalbag D, Patki PS, et al. Search of Immunomodulatory Agents – a review. Indian Drugs. 1991;28:249–54.
29. Vidyasagar P S. Sarangadhara-Samhita. Chaukhamba Surbharati, Varanasi, India, pp. 206, 2006.
30. Barclay T G. Day C M. Petrovsky N, et al. Review of polysaccharide particle-based functional drug delivery Carbohydr Polym. Author manuscript; available in PMC 2020 Oct 1
31. Serra L, Doménech J, Peppas N A. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur J Pharm Biopharm. 2009 Mar; 71(3):519-28.
32. Tripathi B. Caraka Samhita. Chaukhamba Surbharati, Varanasi, India, pp. 451, 2004.
33. Khemuka N, Galib R, Patgiri BJ, et al. Pharmaceutical standardization of Kamsaharitaki granules Ayu. 2015 Oct-Dec; 36(4): 416–420.
34. Chatterjee A., Chaudhury B. Occurrence of auraptene, umbelliferone, marmin, lupeol and skimmianine in the root of Aegle marmelos. Corr J Indian Chem Soc. 1960; 37: 334–336.
35. Benni J M, Jayanthi M K, Suresha R N. Evaluation of the anti-inflammatory activity of Aegle marmelos (Bilwa) root. Indian J Pharmacol. 2011 Jul; 43(4):393-7.
36. Rajendran R, Basha NS. Cardioprotective effect of ethanol extract of stem-bark and stem-wood of Premna serratifolia Linn. (Verbenaceae) Res J Pharm Tech. 2008;1:487–91
37. Mali P Y. Pharmacological potentials of Premna integrifolia L. Anc Sci Life. 2016 Jan-Mar; 35(3): 132–142.
38. Hengpratom T, Lowe GM, Thumanu K. et al. Oroxylum indicum (L.) Kurz extract inhibits adipogenesis and lipase activity in vitro. BMC Complement Altern Med. 2018 Jun 8; 18(1):177.
39. 39. Dunkhunthod B, Talabnin C, Murphy M. et al. Intracellular ROS Scavenging and Anti-Inflammatory Activities of Oroxylum indicum Kurz (L.) Extract in LPS plus IFN-γ-Activated RAW264.7 Macrophages. Evid Based Complement Alternat Med. 2020; 2020: 7436920.
40. Wahab A, Jacob J, Manjunath G G. et al. Vineet Kumar Singh, Cycloolivil, a lignan from the roots of Stereospermum suaveolens Pharmacognosy Res. 2015 Jan-Mar; 7(1): 45–48.
41. Balasubramanian T, Chatterjee TK, Sarkar M, Meena SL. Anti-inflammatory effect of Stereospermum suaveolens ethanol extract in rats. Pharm Biol. 48:318–23.
42. Kulkarni Y. A. Veeranjaneyulu A Toxicological Evaluation of the Methanol Extract of Gmelina arborea Roxb. Bark in Mice and Rats Toxicol Int. 2012 May-Aug; 19(2): 125–131.
43. Shukla S H, Saluja A K, Pandya s S. Modulating effect of Gmelina arborea Linn. on immunosuppressed albino rats Pharmacognosy Res. 2010 Nov-Dec; 2(6): 359–363.
44. Kaunda J, and Zhang Y. The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review Nat Prod Bioprospect. 2019 Apr; 9(2): 77–137.
45. Sbhatu D B Abraha H B Preliminary Antimicrobial Profile of Solanum incanum L.: A Common Medicinal Plant Evid Based Complement Alternat Med. 2020; 2020: 3647065.
46. Anwikar S. Bhitre M. Study of the synergistic anti-inflammatory activity of Solanum xanthocarpum Schrad and Wendl and Cassia fistula Linn Int J Ayurveda Res. 2010 Jul-Sep; 1(3): 167–171
47. Lugun O, Bhoi S, Kujur P et al Evaluation of Antithrombotic Activities of Solanum xanthocarpum and Tinospora cordifolia Pharmacognosy Res. 2018 Jan-Mar; 10(1): 98–103.
48. Kurian G A, Suryanarayanan S, Raman A, et al. Antioxidant effects of ethyl acetate extract of Desmodium gangeticum root on myocardial ischemia reperfusion injury in rat hearts. Chin Med. 2010; 5: 3.
49. Oyesiku O O, Okusanya O T, Olowokudejo J D. Morphological and Anatomical Investigations into the Mechanism of Leaf Pair Unrolling in Uraria Picta (Jacq.) Desv. Ex DC. (Papilionaceae), a Medicinal Plant in Nigeria Afr J Tradit Complement Altern Med. 2013; 10(4): 144–150.
50. Rahman M M, Gibbons S, Gray A I. Isoflavanones from Uraria picta and their antimicrobial activity. Phytochemistry. 2007 Jun; 68(12):1692-7.
51. Veronica O. Odubanjo, Ganiyu Oboh et al Antioxidant and anticholinesterase activities of aqueous extract of Uraria picta (Jacq.) DC. Afr. J. Pharm. Pharmacol. Vol.7(41), pp. 2768-2773 , November 2013
52. Ștefănescu R, Tero-Vescan A, Negroiu A,et al. A Comprehensive Review of the Phytochemical, Pharmacological, and Toxicological Properties of Tribulus terrestris L. Biomolecules. 2020 May; 10(5): 752
53. Tian C., Chang Y., Zhang Z.,et al. Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon. 2019;5:e02234. doi: 10.1016/j.heliyon.2019.e02234.
54. Qiu M, An M, Bian M, et.al. Terrestrosin D from ‘Tribulus terrestris’ attenuates bleomycin-induced inflammation and suppresses fibrotic changes in the lungs of mice. Pharm Biol. 2019 Dec; 57(1):694-700.
55. Juang L J, Sheu S J, Lin T C. Determination of hydrolyzable tannins in the fruit of Terminalia chebula Retz. by high-performance liquid chromatography and capillary electrophoresis.J Sep Sci. 2004 Jun; 27(9):718-24.
56. Bag A, Bhattacharyya S K., Chattopadhyay R R. The development of Terminalia chebula Retz. (Combretaceae) in clinical research Asian Pac J Trop Biomed. 2013 Mar; 3(3): 244–252.
57. Nayaka H. Sathisha U V. Manohar M P. et al. Cytoprotective and antioxidant activity studies of jaggery sugar Food Chemistry Volume 115, Issue 1, 1 July 2009, Pages 113-118
58. Sahu AP, Saxena AK. Enhanced translocation of particles from lungs by jaggery. Environ Health Perspect. 1994 Oct; 102(Suppl 5): 211–214.
59. Pooja S, Agrawal RP, Nyati P,et al. Analgesic Activity Of Piper Nigrum Extract Per Se And Its Interaction With Diclofenac Sodium And Pentazocine In Albino Mice. Internet J Pharmacol. 2007;5(1):30.
60. Atal N., Bedi K L. Bioenhancers: Revolutionary concept to market J Ayurveda Integr Med. 2010 Apr-Jun; 1(2): 96–99.
61. Johri RK, Zutshi U. An Ayurvedic formulation ‘Trikatu’ and its constituents. J Ethnopharmacol. 1992 Sep; 37(2):85-91.
62. Kesarwani K, Gupta R. Bioavailability enhancers of herbal origin: An overview Asian Pac J Trop Biomed. 2013 Apr; 3(4): 253–266 doi: 10.1016/S2221-1691(13)60060-X
63. Yeh H., Chuang C., Chen H., et al. Bioactive components analysis of two various gingers (Zingiber officinaleRoscoe) and antioxidant effect of ginger extracts. LWT-Food Sci. Technol. 2014;55:329–334. doi: 10.1016/j.lwt.2013.08.003.
64. Mahluji S, Ostadrahimi A, Mobasseri M et al Anti-inflammatory effects of zingiber officinale in type 2 diabetic patients. Adv Pharm Bull. 2013; 3(2):273-6.
65. Bandara T, Uluwaduge I, Jansz ER Bioactivity of cinnamon with special emphasis on diabetes mellitus: a review. Int J Food Sci Nutr. 2012 May; 63(3):380-6.
66. Ranasinghe P, Jayawardana R, Galappaththy P et al Efficacy and safety of ‘true’ cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: a systematic review and meta-analysis. Diabet Med. 2012 Dec; 29(12):1480-92.
67. Rad S, Javadi B, Hayes A, KarimI G. Potential angiotensin converting enzyme (ACE) inhibitors from Iranian traditional plants described by Avicenna’s Canon of Medicine Avicenna J Phytomed. 2019 Jul-Aug; 9(4): 291–309.
68. Souissi M, Azelmat J, Chaieb K. et Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections Anaerobe Volume 61, February 2020, 102089
69. Rahman M M, Alam M N, Ulla A, Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats Lipids Health Dis. 2017; 16: 151
70. Kumar S, Vasudeva N, Sharma S. GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats Cardiovasc Diabetol. 2012; 11: 95
71. Om Pandey et al PHARMACEUTICO-ANALYTICAL STUDIES OF KSHARA OF SINGLE PLANT SOURCE A REVIEW INTERNATIONAL AYURVEDIC MEDICAL JOURNAL Volume 7, Issue 1, January – 2019
72. Kodlady N., Galib., Patgiri B.J. Prajapati P.K. Perspectives of Ksara in Carakasamhita Aryavaidyan 2012 May ; 25 (4) :237-245
73. Kwakman P. Zaat S. Antibacterial components of honey IUBMB LifeVolume 64, Issue 1 First published: 17 November 2011
74. Ahmed S., Sulaiman S A., Baig A A., et al. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action Oxid Med Cell Longev. 2018; 2018: 8367846.
75. Parekar R R., Bolegave S S.Marathe P A. et al. Experimental evaluation of analgesic, anti-inflammatory and anti-platelet potential of Dashamoola J Ayurveda Integr Med. 2015 Jan-Mar; 6(1): 11–18.
76. Rege N N, Thatte U M, Dahanukar S A. Adaptogenic properties of six Rasayana herbs used in Ayurvedic medicines. Phytother Res. 1999;13:275–291.
77. Upadhyay S, Tripathi P K, Singh M et al. Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease Phytother Res. 2020 Aug 4 : 10.1002/ptr.6802
78. Kesharwani A, Polachira S K, Nair R. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement Altern Med. 2017; 17: 110.
79. Gogate V M. Dravyagunavidnyana, Vaidyamitra Prakashan, Pune, India, pp 691, 2008.
80. Sahu AP, Saxena AK. Enhanced translocation of particles from lungs by jaggery. Environ Health Perspect. 1994 Oct; 102(Suppl 5): 211–214.
81. Atal N. Bedi K L. Bioenhancers: Revolutionary concept to market J Ayurveda Integr Med. 2010 Apr-Jun; 1(2): 96–99.
82. Rashmi NP. Evaluation of chaturjata arka as a preservative for guduchi kwatha. MD dissertation, Rajiv Gandhi university of health sciences, Bengaluru 2015;p.147.
83. Pandey O. et al PHARMACEUTICO-ANALYTICAL STUDIES OF KSHARA OF SINGLE PLANT SOURCE A REVIEW. IAMJ Volume 7, Issue 1, January – 2019
84. Kodlady N, Galib, Patgiri B.J, Prajapati P.K. Perspectives of Ksara in Carakasamhita Aryavaidyan 2012 May ; 25 (4) :237-245
85. Ahmed S, Sulaiman S A, Baig A A, et al. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action Oxid Med Cell Longev. 2018; 2018: 8367846.
86. Kritas S K, Ronconi G, Caraffa A. et al. Mast cells contribute to coronavirus-induced inflammation: new anti-inflammatory strategy. J Biol Regul Homeost Agents. 2020 January-February; 34(1):9-14.
87. Zhang W., Zhao Y., Zhang F. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China Clin Immunol. 2020 May; 214: 108393 doi: 10.1016/j.clim.2020.108393
88. Tripathi B. Caraka Samhita. Chaukhamba Surbharati, Varanasi, India, pp. 387, 2004.
89. Wang H H., Lee D K., Liu M. Novel Insights into the Pathogenesis and Management of the Metabolic Syndrome Pediatr Gastroenterol Hepatol Nutr. 2020 May; 23(3): 189–230 Published online 2020 May 8. doi: 10.5223/pghn.2020.23.3.189
90. Bhishagratna K L, An English translation of the Sushruta samhita; Alpha editions, Delhi India 2020.
91. Kumaraswamy B V. Ayurvedic Identification And Conceptual Analysis Of Cancer, Ancient Science of Life, Vol No. XIII Nos. 3 & 4, January-April 1994, Pages 218 – 231
92. Chandler C, Liu T, Buckanovich R, Coffman L G. The double edge sword of fibrosis in cancer. Transl Res. 2019 Jul; 209: 55–67. Published online 2019 Feb 21.
93. Tripathi B. Caraka Samhita. Chaukhamba Surbharati, Varanasi, India, pp. 605, 2004.
94. Paradkar S S. Astangahrdaya. Chaukhamba Surbharati, Varanasi, India, pp. 482, 2007.
95. Wong AW, Fidler L, Marcoux V. et al. Practical Considerations for the Diagnosis and Treatment of Fibrotic Interstitial Lung Disease During the Coronavirus Disease 2019 Pandemic Chest. 2020 Sep; 158(3): 1069–1078.
96. Aggrawal B B. et al Identification of Novel Anti-inflammatory Agents from Ayurvedic Medicine for Prevention of Chronic Diseases “Reverse Pharmacology” and “Bedside to Bench” Approach Curr Drug Targets. 2011 Oct 1; 12(11): 1595–1653
97. Parashuraman S Polyherbal formulation: Concept of Ayurveda Pharmacogn Rev. 2014 Jul-Dec; 8(16): 73–80.


Regular Issue Open Access Article
Volume 11
Issue 1
Received January 11, 2022
Accepted February 25, 2022
Published January 7, 2023