Hydrodynamic study through Computational Fluid Dynamics of Radial Flow membrane module

[{“box”:0,”content”:”[if 992 equals=”Open Access”]n

n

n

n

Open Access

nn

n

n[/if 992]n

n

Year : June 11, 2024 at 11:49 am | [if 1553 equals=””] Volume : [else] Volume :[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : | Page : –

n

n

n

n

n

n

By

n

[foreach 286]n

n

n

Keka Rana

n

    n t

  • n

n

n[/foreach]

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Assistant Professor Haldia Institute of Technology Haldia India
  2. n[/if 1175][/foreach]

n[/if 2099][if 2099 equals=”Yes”][/if 2099]n

n

Abstract

nHistorically Crossflow Membrane modules came first in the membrane-based separation (MBS) process. Its high shear generation overcomes two non-idealities concentration polarization and subsequent fouling. Primarily, high shear generation and large surface area create a positive domain for large applications. Thereafter, feed flow rate-dependent shear generation creates a hindrance. This obstruction is overcome with Dynamic Shear Enhanced Membrane Filtration Pilot (DSEMFPs). Low surface area is a vital drawback of DSEMFPs. This radial flow membrane module with its special design develops a large surface area. Moreover, its central inlet and nine peripheral outlets reduce the large pressure drop efficiently. With all the positive properties it efficiently removes the protein from waste water. Moreover, it can work satisfactorily on plenty of wastewater treatment processes. Therefore, a detailed hydrodynamic study of the radial flow module is the primary requirement. The absence of it makes a prominent path for further investigation. Considering the importance of shear, shear stress distribution on the membrane surface is studied here. Moreover, exact velocity vector distribution in the default interior is also vital to understanding the inner hydrodynamic relationship. Additionally, vortices, turbulent kinetic energy, turbulent KE dissipation rate, and dynamic pressure on the membrane surface are also reported in this study for a complete understanding of the exact condition of the membrane surface. All these results justify the positive impact of the Radial flow system in wastewater treatment.

n

n

n

Keywords: Cross flow module, Radial flow, Concentration polarization, Fouling, Waste water treatment, Membrane-based separation (MBS).

n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Polymer Science & Engineering(ijpse)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in International Journal of Polymer Science & Engineering(ijpse)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Keka Rana. Hydrodynamic study through Computational Fluid Dynamics of Radial Flow membrane module. International Journal of Polymer Science & Engineering. June 11, 2024; ():-.

n

How to cite this URL: Keka Rana. Hydrodynamic study through Computational Fluid Dynamics of Radial Flow membrane module. International Journal of Polymer Science & Engineering. June 11, 2024; ():-. Available from: https://journals.stmjournals.com/ijpse/article=June 11, 2024/view=0

nn[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] n[if 992 not_equal=”Open Access”]

[/if 992]n[if 992 not_equal=”Open Access”]


n


n

n[/if 992]nn[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

n

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

[1] Gul B Y, Pekgenc E, Vatanpour V, Koyuncu I. 2023. A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges. Carbohydrate Polymers. 321:121296. https://doi.org/10.1016/j.carbpol.2023.121296.

[2] Sarkar D, Chakraborty D, Naskar M, Bhattacharjee C. 2014. Characterization and modeling of radial flow membrane (RFM) module in ultrafiltration. Desalination. 354:76–86. https://doi.org/10.1016/j.desal.2014.09.020.

[3] Sarkar A, Moulik S, Sarkar D, Roy A, Bhattacharjee C. 2012a. Performance characterization and CFD analysis of a novel shear enhanced membrane module in ultrafiltration of Bovine Serum Albumin (BSA). Desalination. 292:53–63. doi: 10.1016/j.desal.2012.02.009.

[4] Sarkar D, Sarkar A, Roy A, Bhattacharjee C. 2012b. Performance Characterization and design evaluation of Spinning Basket Membrane (SBM) module using Computational Fluid Dynamics (CFD). Sep. Puri. Technol. 94:23–33. https://doi.org/10.1016/j.seppur.2012.03.034.

[5] Cai J J, Hawboldt K, Abdi M A. 2016. Analysis of the effect of module design on gas absorption in cross flow hollow membrane contactors via Computational Fluid Dynamics (CFD) analysis. J. Membr. Sci.520:415-424. https://doi.org/10.1016/j.memsci.2016.07.054.

[6] Salama A. 2020. Investigation of the onset of the breakup of a permeating oil droplet at a membrane surface in crossflow filtration: A new model and CFD verification. Int. J. Multiph. Flow. 126:103255. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103255.

[7] Landázuri A C, Sáez A E, Anthony T R. 2016. Three-dimensional computational fluid dynamics modeling of particle uptake by an occupational air sampler using manually-scaled and adaptive grids. J. Aerosol Sci. 95:54–66. 10.1016/j.jaerosci.2016.01.004.

[8] Launder B E, Spalding D B. 1974. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3 (2):269–289.

[9] Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J. 1995. A new k-e (eddy-viscosity) model for high Reynolds number turbulent flows-model development and validation. Comput. Fluids 24 (3):227–238.

[10] Naskar M, Rana K, Chatterjee D, Dhara T, Sultana R, Sarkar D. 2019. Design, performance characterization and hydrodynamic modeling of intermeshed spinning basket membrane (ISBM) module. Chem. Eng. Sci. 206:446–462. https://doi.org/10.1016/j.ces.2019.05.049.

 

 

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””][else]Ahead of Print[/if 424] Subscription Review Article

n

n

[if 2146 equals=”Yes”][/if 2146][if 2146 not_equal=”Yes”][/if 2146]n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 1748 not_equal=””]

[else]

[/if 1748]n

n

n

Volume
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424]
Received February 7, 2024
Accepted May 17, 2024
Published June 11, 2024

n

n

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]