A Review of Drug Design Techniques Assisted by Computers to Combat Diabetes

Year : 2024 | Volume : | : | Page : –

Satish kumar Yadav


Diabetes mellitus is a global health concern characterized by chronic hyperglycemia and associated complications. The creation of innovative medicines with enhanced efficacy and safety profiles continues to be a top focus, notwithstanding improvements in treatment. A useful method in drug development, computer-aided drug design (CADD) makes it easier to identify possible therapeutic candidates and optimise lead molecules. An extensive synopsis of CADD tactics used in the fight against diabetes is given in this review. It explores virtual screening, molecular docking, pharmacophore modeling, and molecular dynamics simulations, highlighting their applications in identifying novel targets, lead compounds, and multi-target drug combinations. Additionally, it discusses challenges such as data integration, experimental validation, and ethical considerations, along with opportunities for future research, including the integration of artificial intelligence, high-throughput screening, and personalized medicine approaches. This review underscores the potential of CADD to accelerate the discovery of innovative therapeutics for diabetes management, ultimately improving patient outcomes and addressing unmet clinical needs.

Keywords: Diabetes mellitus, Computer-aided drug design (CADD), Virtual screening, Molecular docking, Pharmacophore modelling, Molecular dynamics simulations, Drug discovery, Therapeutic targets, Personalized medicine, Artificial intelligence

How to cite this article: Satish kumar Yadav. A Review of Drug Design Techniques Assisted by Computers to Combat Diabetes. International Journal of Pathogens. 2024; ():-.
How to cite this URL: Satish kumar Yadav. A Review of Drug Design Techniques Assisted by Computers to Combat Diabetes. International Journal of Pathogens. 2024; ():-. Available from: https://journals.stmjournals.com/ijpg/article=2024/view=0


  1. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241-1250.
  2. Daina, A., Michielin, O., & Zoete, V. (2019). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 1-13.
  3. Gromski, P. S., Henson, A. B., Granda, J. M., Cronin, L., & Sans, V. (2019). Data analysis for reaction optimization: A systematic approach. Chemical Science, 10(29), 6717-6727.
  4. Gu, J., Gui, Y., Chen, L., Yuan, G., Lu, H. Z., & Xu, X. (2019). Use of natural products as chemical library for drug discovery and network pharmacology. PLOS ONE, 14(6), e0219049.
  5. Hu, Y., Stumpfe, D., Bajorath, J., & Vogt, M. (2016). An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discovery Today, 21(2), 204-207.
  6. Jia, J., Zhu, F., Ma, X., Cao, Z., Li, Y., & Chen, Y. Z. (2009). Mechanisms of drug combinations: interaction and network perspectives. Nature Reviews Drug Discovery, 8(2), 111-128.
  7. Karaman, B., Sippl, W., & Kuzmanovic, N. (2018). Rescoring and rescoring strategies in structure-based drug discovery. Drug Discovery Today: Technologies, 30, 75-86.
  8. Koes, D. R., Camacho, C. J., & Kolatkar, P. R. (2013). Potential energy landscapes identify the nature of the binding mechanism in the p38-α MAP kinase⋅SB203580 complex. Chemistry & Biology, 20(1), 92-103.
  9. Kostoff, R. N., Block, J. A., Solka, J., Briggs, M. B., & Rushenberg, R. L. (2006). Highly cited diabetes research papers from 1996 to 2003: a bibliometric analysis. Current Science, 91(10), 1379-1383.
  10. Kruger, F. A., Rostom, R., Overington, J. P., & Edwards, A. M. (2012). The SIDER database of drugs and side effects. Nucleic Acids Research, 38(suppl_1), D1075-D1079.
  11. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3-26.
  12. Ma, D. L., Chan, D. S., Leung, C. H., & Drug Discovery for Treating Type 2 Diabetes Mellitus. (2017). Topics in Medicinal Chemistry, 27-104.
  13. Mayr, L. M., & Bojanic, D. (2009). Novel trends in high-throughput screening. Current Opinion in Pharmacology, 9(5), 580-588.
  14. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1-14.
  15. Papa, E., Docking, R., Moncalvo, A., Martin-Santamaria, S., De La Torre, B. G., & Ranzani, A. T. (2020). The role of computational chemistry in drug discovery. Molecules, 25(6), 1300.
  16. Papadopoulos, M. G., Kanakis, C. D., Polissiou, M. G., Efthimiopoulos, I., & Cordopatis, P. (2014). Inhibitory activity on amyloid-beta aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. Journal of Agricultural and Food Chemistry, 62(2), 562-571.
  17. Sastry, M., Lowrie, J. F., Dixon, S. L., & Sherman, W. (2010). Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. Journal of Chemical Information and Modeling, 50(5), 771-784.
  18. Schapira, M., & Abagyan, R. (2017). Systems chemical biology and the semantic web: what they mean for the future of drug discovery research. Expert Opinion on Drug Discovery, 12(10), 961-973.
  19. Sun, H., Duan, L., Chen, F., Liu, H., Wang, Z., & Pan, P. (2019). Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Physical Chemistry Chemical Physics, 21(9), 4681-4690.
  20. Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461.
  21. Ulijn, R. V., Bibi, N., Jayawarna, V., Thornton, P. D., & Todd, S. J. (2016). Bioresponsive hydrogels. Materials Today, 19(10), 507-514.
  22. Villoutreix, B. O., & Lagorce, D. (2006). Computational approaches to drug design and discovery: Applications to cardiovascular and central nervous system diseases. Current Medicinal Chemistry, 13(24), 1767-1776.
  23. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157-1174.
  24. Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., & Wang, Z. (2018). admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties

Ahead of Print Subscription Review Article
Received May 11, 2024
Accepted May 15, 2024
Published May 20, 2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
else { x.style.display = “Block”; }
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
var slideIndex = 1;
function changeSlides(n) {
showSlides((slideIndex += n));
function currentSlide(n) {
showSlides((slideIndex = n));
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
item => (item.className = item.className.replace(” selected”, “”))
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;