Structural and Optical Study of CdSe Q-dots

Open Access

Year : 2023 | Volume :8 | Issue : 1 | Page : 25-30

Jyotsna Chauhan

Varsha R. Mehto

Akanksha Mehto

Priyanshita Thakur

  1. Professor Department of Physics, Rajiv Gandhi Technical University, Bhopal Madhya Pradesh India
  2. Assistant Professor Department of Physics, Government College Lateri, Vidisha Madhya Pradesh India


In this paper we have report the properties of CdSe Q-dots. Calculations of different parameters for different sizes of CdSe Q-dots are presented. The XRD analysis used to find the composition, crystal structure and crystallite size. Scherrer equation is used to calculate the Nano crystallite size. XRD analysis reveals that the CdSe QD crystallite sizes in the sample are 3.26 nm, 3.72 nm, and 3.20 nm by applying the appropriate capping agent during the synthesis process. The optical absorption studies revealed that the observed absorption edges in the nano crystalline samples exhibited a blue shift due to the quantum confinement effect. Strain is also increased with decreasing the size of nanoparticles.PL study revealed.

Keywords: CdSe, Q-dots, XRD, Strain, Optical, Nanostructure

[This article belongs to International Journal of Nanomaterials and Nanostructures(ijnn)]

How to cite this article: Jyotsna Chauhan, Varsha R. Mehto, Akanksha Mehto, Priyanshita Thakur. Structural and Optical Study of CdSe Q-dots. International Journal of Nanomaterials and Nanostructures. 2023; 8(1):25-30.
How to cite this URL: Jyotsna Chauhan, Varsha R. Mehto, Akanksha Mehto, Priyanshita Thakur. Structural and Optical Study of CdSe Q-dots. International Journal of Nanomaterials and Nanostructures. 2023; 8(1):25-30. Available from:

Full Text PDF Download

Browse Figures


1. Chauhan, J., Mehto, V.R. and Kumar, D., 2018. Synthesis and Characterization of CdS Nanoparticles for LED Application. International Journal of Applied Nanotechnology, 4(1), pp.12-18.
2. Drexler, K.E., 1986. New era of nanotechnology. Engines of creation: The coming era of nanotechnology, New York, Anchor Press, pp.99-129.
3. Drexler, K.E., 1992. Nanosystems: molecular machinery, manufacturing, and computation. John Wiley & Sons, Inc.
4. Ashoori, R. C. (1996). “”Electrons in artificial atoms””. Nature. 379 (6564): 413419. Bibcode:1996Natur. 379..413A. doi:10.1038/379413a0.
5. Tsui, D.C. and Stormer, H.L., 1983. JCM Hwang, JS Brooks and MJ Naughton. Phys. Rev, 828, p.2274.
6. Jang, H.S. and Jeon, D.Y., 2007. Yellow-emitting Sr 3 Si O 5: Ce 3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes. Applied Physics Letters, 90(4), p.041906.
7. Shalom, M., Dor, S., Ruhle, S., Grinis, L. and Zaban, A., 2009. Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. The Journal of Physical Chemistry C, 113(9), pp.3895-3898.
8. Cui, Q., Liu, C., Wu, F., Yue, W., Qiu, Z., Zhang, H., Gao, F., Shen, W. and Wang, M., 2013. Performance improvement in polymer/ZnO nanoarray hybrid solar cells by formation of ZnO/CdS-core/shell heterostructures. The Journal of Physical Chemistry C, 117(11), pp.5626-5637.
9. Chauhan, J., Mehto, V.R. and Soni, D., Synthesis and Characterization of Size Tuned CdS Quantum Dots Journal of Nanoscience, Nanoengineering & Applications 2018; 08 (01): 28-39p.
10. Wang, H., Wong, K.S., Foreman, B.A., Yang, Z.Y. and Wong, G.K.L., 1998. One-and two-photon-exciting time-resolved photoluminescence investigations of bulk and surface recombination dynamics in ZnSe. Journal of applied physics, 83(9), pp.4773-4776.
11. Hollingsworth, R.E. and Sites, J.R., 1982. Photoluminescence dead layer in p‐type InP. Journal of Applied Physics, 53(7), pp.5357-5358.
12. Continuous Flow Synthesis Method for Fluorescent Quantum Dots. (2013-06-01). Retrieved on 2015-07-19.
13. Van Driel, A.F., Allan, G., Delerue, C., Lodahl, P., Vos, W.L. and Vanmaekelbergh, D., 2005. Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: Influence of dark states. Physical Review Letters, 95(23), p.236804.
14. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S.J.J.L., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S. and Weiss, S., 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. science, 307(5709), pp.538-544.
15. Konstantatos, G. and Sargent, E.H., 2009. Solution-processed quantum dot photodetectors. Proceedings of the IEEE, 97(10), pp.1666-1683.
16. Konstantatos, G., 2009. Sensitive Solution-processed Quantum Dot Photodetectors (Doctoral dissertation).
17. Lev Isaakovich Berger (1996). Semiconductor materials. CRC Press. p. 202. ISBN 0- 8493-8912-7.
18. Anderson, N.C., and Owen, J.S., 2013. Soluble, chloride terminated CdSe nanocrystals: ligand exchange monitored by 1H and 31P NMR spectroscopy. Chemistry of Materials, 25(1), pp.69-76.
19. García‐García, J., González‐Hernández, J., Mendoza‐Alvarez, J.G., Cruz, E.L. and Contreras‐Puente, G., 1990. Photoluminescence characterization of the surface layer of chemically etched CdTe. Journal of applied physics, 67(8), pp.3810-3814.
20. Chauhan, J. and Bhopche, V., Study of Implementation of Led Using Cads Based Quantum Dot.
21. Klug, H.P. and Alexander, L.E., 1974. X-rays; x-ray diffraction.
22. D. Kaushik, Thesis “Studies on Low Dimensional II-VI Semiconductor Compounds”, B.U. Bhopal (2007).
23. Hegazy, M.A. and Abd El-Hameed, A.M., 2014. Characterization of CdSe-nanocrystals used in semiconductors for aerospace applications: Production and optical properties. NRIAG Journal of Astronomy and Geophysics, 3(1), pp.82-87.
24. Dipesh, N., 2012. Structural and optical investigation of CdSe quantum dots. Kathmandu University Journal of Science, Engineering and Technology, 8(2), pp.83-88.
25. Dorset, D.L., 1998. X-ray diffraction: a practical approach. Microscopy and microanalysis, 4(5), pp.513-515.
26. Sankaran, R.M., Holunga, D., Flagan, R.C. and Giapis, K.P., 2005. Synthesis of blue luminescent Si nanoparticles using atmospheric pressure microdischarges. Nano letters, 5(3), pp.537-541.

Regular Issue Open Access Article
Volume 8
Issue 1
Received March 4, 2022
Accepted March 24, 2022
Published January 24, 2023