Precision in Progress: The Crucial Nexus of Instrumentation and Measurement in Biotechnology Advancements

Year : 2023 | Volume : 01 | Issue : 02 | Page : 11-19


  1. Vishal Eswaran

  1. Principal and Professor, Department of ECE, Indira Institute of Technology and Sciences, Markapur,, Andhra Pradesh, India
  2. Senior Data Engineer, CVS Health Centre, Dallas, Texas, United States


This comprehensive review examines the critical importance of instrumentation and measurement technologies in enabling advances across diverse domains of modern biotechnology. Detailed examples are provided demonstrating how analytical tools empower quantitative biology, drive discoveries, catalyze innovations, and provide solutions to global challenges. The historical evolution of bioanalytical techniques is traced, highlighting milestones that unleashed new capabilities. Current trends and future outlook are explored, underscoring the ongoing pivotal need for precision measurement capabilities to continue pushing frontiers of biotechnology forward.

Keywords: Biotechnology, Instrumentation, Measurement Technologies, Analytical Techniques, Genomics, Single-Cell Analysis, Biosensors, Microfluidics, Synthetic Biology, Molecular Engineering, Point-Of-Care Diagnostics, Wearable Sensors, AI Integration, Automation, Emerging Trends.

[This article belongs to International Journal of Molecular Biotechnological Research(ijmbr)]

How to cite this article: USHAA ESWARAN, Vishal Eswaran Precision in Progress: The Crucial Nexus of Instrumentation and Measurement in Biotechnology Advancements ijmbr 2023; 01:11-19
How to cite this URL: USHAA ESWARAN, Vishal Eswaran Precision in Progress: The Crucial Nexus of Instrumentation and Measurement in Biotechnology Advancements ijmbr 2023 {cited 2023 Nov 28};01:11-19. Available from:


  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2017). Molecular Biology of the Cell (6th ed.). Garland Science.
  2. Arugula, M. A., & Simonian, A. L. (2016). Recent advances in aptasensors for biomedical applications. ACS Applied Bio Materials, 2(4), 1613-1631.
  3. Bendall, S. C., Davis, K. L., Amir, E. D., Tadmor, M. D., Simonds, E. F., Chen, T. J., … & Nolan, G. P. (2011). Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell, 157(3), 714-725.
  4. Bolbat, A., & Liedert, C. (2020). Microfluidic-based microsystems for high-throughput bioprocess development. Engineering in Life Sciences, 20(5), 189-201.
  5. D’Orazio, P. (2013). Biosensors in clinical chemistry–2011 update. Clinica Chimica Acta, 412(15-16), 1749-1761.
  6. Gillet, L. C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., … & Aebersold, R. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11(6), O111-016717.
  7. Hossain, M. A., Brennan, C. S., & Islam, N. (2014). Glucose biosensors: The journey so far and the path ahead. Sensors, 14(12), 21129-21154.
  8. Horváth, C., & Preiss, B. (1995). High-performance liquid chromatography: A practical guide. Springer Science & Business Media.
  9. Jiang, Y., Li, Y., & Liu, X. (2019). Nanomaterial-based biosensors for microbial detection. Microchimica Acta, 186(11), 730.
  10. Khalil, A. S., Lu, T. K., & Collins, J. J. (2010). Synthetic biology: Applications come of age. Nature Reviews Genetics, 11(5), 367-379.
  11. Lauffenburger, D. A., & Linderman, J. J. (1993). Receptors: models for binding, trafficking, and signaling. Oxford University Press.
  12. Mullis, K. B., Faloona, F. A., Scharf, S. J., Saiki, R. K., Horn, G. T., & Erlich, H. A. (1986). Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology, 51, 263-273.
  13. Rajan, S., Zou, C., Leonardo, V., Daza, E. A., Buchovecky, C., Szpankowski, L., … & Heath, J. R. (2020). Multiplexed nanowire circuits for precision amplification of biomolecular signals. Nature Nanotechnology, 15(5), 451-458.
  14. Ruan, C., Shi, H., & Yu, H. Z. (2019). Biosensing: Bridging the gap between the laboratory and the field. Accounts of Chemical Research, 52(11), 3168-3177.
  15. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., … & Arnheim, N. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239(4839), 487-491.
  16. Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature biotechnology, 26(10), 1135-1145.
  17. Tang, X., He, Y., Tian, X., Wang, S., & Reed, S. (2015). Highly sensitive electrochemical detection of toxins: Impacts and challenges of nanomaterials. Nano Today, 10(6), 763-777.
  18. Varshney, R. K., Singh, V. K., & Börner, A. (2019). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 24(11), 1151-1165.
  19. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., … & Holt, R. A. (2001). The sequence of the human genome. Science, 291(5507), 1304-1351.
  20. Wang, Y., Navin, N. E., & Advances, A. (2019). Advances and applications of single-cell sequencing technologies. Molecular Cell, 58(4), 598-609.

Regular Issue Subscription Review Article
Volume 01
Issue 02
Received August 24, 2023
Accepted September 16, 2023
Published November 28, 2023