A Molecular Docking Study: Targetting HIV-1 Integrase Protein against Selected Phytocompounds from Calophyllum Lanigerum

Year : 2023 | Volume :01 | Issue : 02 | Page : 42-54
By

Rishabh Kulkarni

Shubham Wanarase

  1. Student, Department of Bioinformatics, BioNome, Karnataka, India
  2. Student, Department of Bioinformatics, BioNome, Karnataka, India

Abstract

The most common form of HIV that causes AIDS is HIV-1. The World Health Organization has estimated roughly 75 million plus HIV-1 infections till date and roughly 40 million deaths (as of 2021). Thus, this study was done to identify natural compounds from Calophyllum lanigerum, a medicinal plant largely endemic to South-East Asia, to inhibit the spread of this disease. It did so by using molecular docking methods, Lipinski drug-likeness prediction, and the ADME analysis. Methods: The Protein Data Bank database was used to retrieve the HIV-1 Integrase protein (core domain with catalytic activity). The ligands were obtained from PubChem. PyRx was used for the docking analysis, and Biovia Discovery Studio Visualizer was used to display the receptor ligand interactions. Swiss-ADME, an online tool, was used to conduct the ADMET and Lipinski drug-likeliness study. Results: Five compounds from C. lanigerum have been identified by molecular docking studies as having potential binding affinity to prevent the integration of HIV-1 dsDNA (reverse transcribed) into the genome of human immunocytes, such as CD4+ T cells, which would have an impact on viral replication. According to the ADMET profile and drug likeness prediction, each of the top 5 compounds is safe and possesses drug-like qualities. Conclusion: The current investigation identifies 5 phytocompounds in total as having the strongest binding affinities and potential inhibitory effects on HIV-1 Integrase activity

Keywords: HIV-1, AIDS, Calophyllum lanigerum, HIV-1 Integrase, CD4+ T cell, Viral replication

[This article belongs to International Journal of Molecular Biotechnological Research(ijmbr)]

How to cite this article: Rishabh Kulkarni, Shubham Wanarase. A Molecular Docking Study: Targetting HIV-1 Integrase Protein against Selected Phytocompounds from Calophyllum Lanigerum. International Journal of Molecular Biotechnological Research. 2023; 01(02):42-54.
How to cite this URL: Rishabh Kulkarni, Shubham Wanarase. A Molecular Docking Study: Targetting HIV-1 Integrase Protein against Selected Phytocompounds from Calophyllum Lanigerum. International Journal of Molecular Biotechnological Research. 2023; 01(02):42-54. Available from: https://journals.stmjournals.com/ijmbr/article=2023/view=123747

Browse Figures

References

  1. Greene WC 2007. A history of AIDS: Looking back to see ahead. Eur J Immunol 37 Suppl. 1: S94–S102 [PubMed] [Google Scholar]
  2. World Health Organization (WHO) [(accessed on 1 December 2017)];2017 Available online: http://www.who.int/hiv/data/epi_plhiv_2016_regions.png?ua=1
  3. Kharsany A.B., Karim Q.A. HIV infection and AIDS in sub-saharan Africa: Current status, challenges and opportunities. Open AIDS J. 2016;10:34–48. doi: 10.2174/1874613601610010034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  4. Powell MK, Benková K, Selinger P, Dogoši M, Kinkorová Luňáčková I et al. (2016). “Opportunistic Infections in HIV-Infected Patients Differ Strongly in Frequencies and Spectra between Patients with Low CD4+ Cell Counts Examined Postmortem and Compensated Patients Examined Antemortem Irrespective of the HAART Era”. PLOS ONE. 11 (9): e0162704. Bibcode:1162704P. doi:10.1371/journal.pone.0162704. PMC 5017746. PMID 27611681.
  5. UNAIDS; WHO (December 2007). “2007 AIDS epidemic update” (PDF). p. 16.
  6. Rodger AJ, Cambiano V, Bruun T, Vernazza P, Collins S et al. (June 2019). “Risk of HIV transmission through condomless sex in serodifferent gay couples with the HIV-positive partner taking suppressive antiretroviral therapy (PARTNER): final results of a multicentre, prospective, observational study”. Lancet. 393 (10189): 2428–2438. doi:1016/S0140-6736(19)30418-0. PMC 6584382. PMID 31056293.
  7. Eisinger RW, Dieffenbach CW, Fauci AS (February 2019). “HIV Viral Load and Transmissibility of HIV Infection: Undetectable Equals Untransmittable”. JAMA. 321 (5): 451–452. doi:1001/jama.2018.21167. PMID 30629090. S2CID 58599661.
  8. Cunningham AL, Donaghy H, Harman AN, Kim M, Turville SG (August 2010). “Manipulation of dendritic cell function by viruses”. Current Opinion in Microbiology. 13 (4): 524–9. doi:1016/j.mib.2010.06.002. PMID 20598938.
  9. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM et al. (January 2014). “Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection”. Nature. 505 (7484): 509–14. Bibcode:505..509D. doi:10.1038/nature12940. PMC 4047036. PMID 24356306.
  10. Garg H, Mohl J, Joshi A (November 2012). “HIV-1 induced bystander apoptosis”. Viruses. 4 (11): 3020–43. doi:3390/v4113020. PMC 3509682. PMID 23202514.
  11. Kumar V (2012). Robbins Basic Pathology (9th ed.). p. 147. ISBN 978-1-4557-3787-1.
  12. Piot P., Karim S.S.A., Hecht R., Legido-Quigley H., Buse K. et al. : Defeating AIDS—Advancing global health. Lancet. 2015;386:171–218. doi: 10.1016/S0140-6736(15)60658-4. [PubMed] [CrossRef] [Google Scholar]
  13. Günthard H.F., Aberg J.A., Eron J.J., Hoy J.F., Telenti A. et al. : Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society—USA panel. JAMA. 2014;312:410–425. doi: 10.1001/jama.2014.8722. [PubMed] [CrossRef] [Google Scholar]
  14. Auvert B., Taljaard D., Lagarde E., Sobngwi-Tambekou J., Sitta R., Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: The ANRS 1265 trial. PLoS Med. 2005;2:e298. doi: 10.1371/journal.pmed.0020298. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  15. Bailey R.C., Moses S., Parker C.B., Agot K., Maclean I., Krieger J.N. et al. : Male circumcision for HIV prevention in young men in Kisumu, Kenya: A randomised controlled trial. Lancet. 2007;369:643–656. doi: 10.1016/S0140-6736(07)60312-2. [PubMed] [CrossRef] [Google Scholar]
  16. Anderson S.-J., Cherutich P., Kilonzo N., Cremin I., Fecht D. et al. : Maximising the effect of combination HIV prevention through prioritisation of the people and places in greatest need: A modelling study. Lancet. 2014;384:249–256. doi: 10.1016/S0140-6736(14)61053-9. [PubMed] [CrossRef] [Google Scholar]
  17. Cohen M.S., Chen Y.Q., McCauley M., Gamble T., Hosseinipour M.C. et al.: Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 2011;365:493–505. doi: 10.1056/NEJMoa1105243. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  18. Guay L.A., Musoke P., Fleming T., Bagenda D., Allen M. et al.: Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet. 1999;354:795–802. doi: 10.1016/S0140-6736(99)80008-7. [PubMed] [CrossRef] [Google Scholar]
  19. Maartens G., Celum C., Lewin S.R. HIV infection: Epidemiology, pathogenesis, treatment, and prevention. Lancet. 2014;384:258–271. doi: 10.1016/S0140-6736(14)60164-1. [PubMed] [CrossRef] [Google Scholar]
  20. Sharifi-Rad J. Herbal antibiotics: Moving back into the mainstream as an alternative for “superbugs” Cell. Mol. Biol. 2016;62:1–2. [PubMed] [Google Scholar]
  21. WHO In vitro screening of traditional medicines for anti-HIV activity: Memorandum from a WHO meeting. Bull. World Health Organ. 1989;87:613–618. [PMC free article] [PubMed] [Google Scholar]
  22. WHO . Report of a Who Informal Consultation on Traditional Medicine and AIDS: In Vitro Screening for Anti-HIV Activity. WHO; Geneva, Switzerland: 1989. [Google Scholar]
  23. Kurapati K.R.V., Atluri V.S., Samikkannu T., Garcia G., Nair M.P. Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (hand): A brief overview. Front. Microbiol. 2016;6:1444. doi: 10.3389/fmicb.2015.01444. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  24. Li G, De Clercq E (September 2016). “HIV Genome-Wide Protein Associations: a Review of 30 Years of Research”. Microbiology and Molecular Biology Reviews. 80 (3): 679–731. doi:1128/MMBR.00065-15. PMC 4981665. PMID 27357278.
  25. Singleton P, Sainsbury D, eds. (2006). “Hiv”. Dictionary of microbiology & molecular biology (3rd ed.). Hoboken, NJ: Wiley. ISBN 9780470035450. OCLC 71223221.
  26. Varmus H, Brown PO. Retroviruses. In: Berg DE, Howe MM, editors. Mobile DNA. Washington, DC, USA: American Society of Microbiology; 1989. pp. 53–108. [Google Scholar]
  27. Ciuffi A. Mechanisms governing lentivirus integration site selection. Curr. Gene Ther. 2008;8(6):419–429. [PubMed] [Google Scholar]
  28. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science. 2009;323(5919):1304–1307. [PubMed] [Google Scholar]
  29. Goff Genetics of retroviral integration. Ann. Rev. Genet. 1992;26:527–544. [PubMed] [Google Scholar]
  30. Thang K Chiu 1, David R Davies (2004), Structure and Function of HIV-1 Integrase *
  31. Li, Xi-wen; Li, Jie; Stevens, Peter (n.d.). “Calophyllum (Linnaeus) Sp. Pl. 1: 513. 1753., 1841. 红厚壳属 hong hou ke shu”. Flora of China. p. 1, 38.
  32. Kashman Y, Gustafson KR, Fuller RW, Cardellina JH, McMahon JB et al. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum J Med Chem. 1992;35(15):2735–2743. [PubMed] [Google Scholar] [Ref list]
  33. McKee TC, Fuller RW, Covington CD, Cardellina JH, Gulakowski RJ et al. New pyranocoumarins isolated from Calophyllum lanigerum and Calophyllum J Nat Prod. 1996;59(8):754–758. [PubMed] [Google Scholar] [Ref list]
  34. Dharmaratne HRW, Wijesinghe WNM. A trioxygenated diprenylated chromenxanthone from Calophyllum Phytochemistry. 1997;46(7):1293–1295. [Google Scholar] [Ref list]
  35. Kostova I., Raleva S., Genova P., Argirova R. Structure-activity relationships of synthetic coumarins as HIV-1 inhibitors. Chem. Appl. 2006;2006:68274. [PMC free article] [PubMed] [Google Scholar]
  36. Kostova I. Coumarins as inhibitors of HIV reverse transcriptase. Curr. HIV. Res. 2006;4:347–363. [PubMed] [Google Scholar]
  37. Yu D., Suzuki M., Xie L., Morris-Natschke S.L., Lee K.H. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med. Res. Rev. 2003;23:322–345. [PubMed] [Google Scholar]
  38. RCSB PDB (Research Collaboratory for Structural Bioinformatics – Protein Data Bank), Structure of Catalytic core domain of HIV-1 Integrase: (https://www.rcsb.org/structure/7D83).
  39. PubChem Database, Phytocompounds of lanigerum: (https://pubchem.ncbi.nlm.nih.gov/#query=[{%22query%22:%22Calophyllum%20lanigerum%22,%22tab%22:%22pubmed%22,%22collection%22:%22pubmed%22,%22id_type%22:%22pmid%22}]&collection=compound).
  40. Mcconkey BJ, Sobolev V, Edelman M. The performance of current methods in ligand-protein docking. Curr Sci 2002;83:845-55.
  41. Trott O, Olson AJ. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-61.
  42. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: An open chemical toolbox. J Cheminform 2011;3:33.
  43. Biovia DS. Discovery Studio Modeling Environment. San Diego: Dassault Systemes; 2015. Available from: https://www.scirp. org/(S(351jmbntv-nsjt1aadkposzje))/reference/referencespapers. aspx?referenceid=2450411 [Last accessed on 2022 Aug 05].
  44. Wikipedia Contributors. ADME. Wikipedia, The Free Encyclopedia; 2022. Available from: https://en.wikipedia.org/w/index. php?title=ADME&oldid=1087865915 [Last accessed on 2022 Aug 05].
  45. Swiss-ADME online server: http://www.swissadme.ch/
  46. ChemAGG online platform: https://admet.scbdd.com/ChemAGG/index/
  47. ProTox-II tool: (https://tox-new.charite.de/protox_II/)
  48. “HIV/AIDS Factsheet”. World Health Organization. Retrieved 6 March 2022

Regular Issue Subscription Original Research
Volume 01
Issue 02
Received August 4, 2023
Accepted September 25, 2023
Published October 20, 2023