Illuminating the Frontier of Drug Discovery: Unleashing the Power of Bioinformatics for Unprecedented Breakthroughs

Year : 2023 | Volume :01 | Issue : 02 | Page : 1-10
By

    S. Luqman Ali

  1. Awais Ali

  2. Waseef Ullah

  3. Kashif Adil

  4. M. Usman

  1. M.phill Scholar, Abdul Wali khan university, Mardan, Pakistan
  2. M.phill Scholar, Abdul Wali khan university, Mardan, Pakistan
  3. Student, Abdul Wali khan university, Mardan, Pakistan
  4. Student, Abdul Wali khan university, Mardan, Pakistan
  5. Student, Abdul Wali khan university, Mardan, Pakistan

Abstract

It takes a long time and a lot of effort to discover and develop new drugs, which necessitates extensive study and testing. With the help of computational techniques and data analysis, bioinformatics has grown to be a potent tool for drug discovery in recent years, allowing researchers to find new drugs faster. In this review, we examine the role of bioinformatics in drug discovery, including the use of ligand- and structure-based drug design, virtual screening based on pharmacophore models, de novo design based on pharmacophore models, and quantitative structure-activity relationship (QSAR) models and machine learning techniques. We also talk about how important data collection from different sources, like natural and synthetic databases, is for supporting drug discovery efforts. We highlight the potential of bioinformatics to revolutionise the field of drug discovery and to hasten the creation of new medications for the treatment of a variety of diseases through an analysis of recent research.

Keywords: Bioinformatics, Drug discovery, Ligand-based drug design, Structure-based drug design, Virtual screening, QSAR, Machine learning, Data assortment

[This article belongs to International Journal of Molecular Biotechnological Research(ijmbr)]

How to cite this article: S. Luqman Ali, Awais Ali, Waseef Ullah, Kashif Adil, M. Usman Illuminating the Frontier of Drug Discovery: Unleashing the Power of Bioinformatics for Unprecedented Breakthroughs ijmbr 2023; 01:1-10
How to cite this URL: S. Luqman Ali, Awais Ali, Waseef Ullah, Kashif Adil, M. Usman Illuminating the Frontier of Drug Discovery: Unleashing the Power of Bioinformatics for Unprecedented Breakthroughs ijmbr 2023 {cited 2023 Oct 20};01:1-10. Available from: https://journals.stmjournals.com/ijmbr/article=2023/view=123733


Browse Figures

References

  1. Ajjarapu, S. M., Tiwari, A., Ramteke, P. W., Singh, D. B., & Kumar, S. (2022). Ligand-based drug designing. In Bioinformatics (pp. 233–252). Elsevier.
  2. Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., & Steffenel, L. A. (2022). Machine-learning methods for ligand–protein molecular docking. Drug Discovery Today, 27(1), 151–164.
  3. Deng, J., Yang, Z., Ojima, I., Samaras, D., & Wang, F. (2022). Artificial intelligence in drug discovery: applications and techniques. Briefings in Bioinformatics, 23(1).
  4. Gertrudes, J. C., Maltarollo, V. G., Silva, R. A., Oliveira, P. R., Honorio, K. M., & Da Silva, A. B. F. (2012). Machine learning techniques and drug design. Current Medicinal Chemistry, 19(25), 4289–4297.
  5. Hemmerling, F., & Piel, J. (2022). Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nature Reviews Drug Discovery, 21(5), 359–378.
  6. Irham, L. M., Adikusuma, W., & Perwitasari, D. A. (2022). Genomic variants-driven drug repurposing for tuberculosis by utilizing the established bioinformatic-based approach. Biochemistry and Biophysics Reports, 32, 101334.
  7. Labjar, H., Labjar, N., & Kissi, M. (2022). QSAR Anti-HIV Feature Selection and Prediction for Drug Discovery Using Genetic Algorithm and Machine Learning Algorithms. In Computational Intelligence in Recent Communication Networks (pp. 191–204). Springer.
  8. Neves, B. J., Braga, R. C., Melo-Filho, C. C., Moreira-Filho, J. T., Muratov, E. N., & Andrade, C. H. (2018). QSAR-based virtual screening: advances and applications in drug discovery. Frontiers in Pharmacology, 9, 1275.
  9. Parikh, P. K., Savjani, J. K., Gajjar, A. K., & Chhabria, M. T. (2023). Bioinformatics and Cheminformatics Tools in Early Drug Discovery. Bioinformatics Tools for Pharmaceutical Drug Product Development, 147–181.
  10. Rastogi, S. C., Rastogi, P., & Mendiratta, N. (2022). Bioinformatics: Methods and Applications-Genomics, Proteomics and Drug Discovery. PHI Learning Pvt. Ltd.
  11. Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395.
  12. Ugbaja, S. C., Mtambo, S. E., Mushebenge, A. G., Appiah-Kubi, P., Abubakar, B. H., Ntuli, M. L., & Kumalo, H. M. (2022). Structural Investigations and Binding Mechanisms of Oseltamivir Drug Resistance Conferred by the E119V Mutation in Influenza H7N9 Virus. Molecules, 27(14). https://doi.org/10.3390/molecules27144376
  13. Winkler, D. A. (2022). The impact of machine learning on future tuberculosis drug discovery. Expert Opinion on Drug Discovery, 17(9), 925–927.
  14. Yao, H., Liu, J., Xu, M., Ji, J., Dai, Q., & You, Z. (2022). Discussion on molecular dynamics (MD) simulations of the asphalt materials. Advances in Colloid and Interface Science, 299, 102565.

Regular Issue Subscription Review Article
Volume 01
Issue 02
Received June 14, 2023
Accepted June 23, 2023
Published October 20, 2023