Scleroglucan Production by Microbes and Downstream Processing

Year : 2022 | Volume : | Issue : 1 | Page : 18-23

    Nidhi Aggarwal

  1. Student, Department of Biology, College of Biology, UP Pandit Deen Dayal Upadhyaya pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Uttar Pradesh, India


Polymer based synthetic petroleum and plant natural polysaccharides do have the drawback of limited sources, as well as the latter’s non-biodegradability. Eco-friendly, low-cost, and standardised microbial polysaccharides, on the other hand, offer a viable solution to this problem. They drew international recognition due to their original and distinctive physical and chemical propertiesas well as a diverse spectrum of industrial applications, the majority of which are rapidly becoming economically competitive. Scleroglucan, a 1, 3-beta-1, 6-glucan secreted by Sclerotium fungus, has a great economic potential and can have a variety of branching frequencies, side-chain lengths, and molecular weights dependent on the generating strains and cultivation circumstances. Scleroglucan’s viscosifying ability, water solubility, and pH, wide temperature, and salt concentrations stabilisation make it viable for just a variety of bioengineering ( food additives, improve oil recovery, cosmetic, drug delivery biocompatible materials, and pharmaceutical products, and so on) and biomedical, immunotherapy, antitumor, and so on application areas. It could be generated in large quantities at a bioreactor scale under standardised circumstances, with a high exopolysaccharide proportion governing performance improvement.

Keywords: Sclerglucan, Downstream process, Polymers, Production, Culture, Microbes

[This article belongs to International Journal of Industrial Biotechnology and Biomaterials(ijibb)]

How to cite this article: Nidhi Aggarwal Scleroglucan Production by Microbes and Downstream Processing ijibb 2022; 8:18-23
How to cite this URL: Nidhi Aggarwal Scleroglucan Production by Microbes and Downstream Processing ijibb 2022 {cited 2022 Jun 10};8:18-23. Available from:

Full Text

Browse Figures


1. Desai, K.M., Survase, S.A., Saudagar, P.S., Lele, S., and Singhal, R.S. (2008). Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem. Eng. J. 41, 266–273.
2. Deshpande, M.S., Rale, V.B., and Lynch, J.M. (1992). Aureobasidium pullulans in applied microbiology: a status report. Enzyme Microb. Technol. 14, 514–527. doi: 10.1016/0141- 0229(92)90122-5
3. Deslandes, Y., Marchessault, R., and Sarko, A. (1980). Triple-helical structure of (1→3)-β-D- glucan. Macromolecules 13, 1466–1471. doi: 10.1021/ma60078a020
4. Donche, A., Vaussard, A., and Isambourg, P. (1994). Application of Scleroglucan Muds to Drilling Deviated Wells. U.S. Patent No 5,330,015. Washington, DC: U.S. Patent and Trademark Office.
5. Donot, F., Fontana, A., Baccou, J.C., and Schorr-Galindo, S. (2012). Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 87, 951–962. doi: 10.1016/j.carbpol.2011.08.083
6. Doster, M.S., Nute, A.J., and Christopher, C.A. (1984a). Injecting Polysaccharide and Water Soluble Guanidine Compound. U.S. Patent No 4,457,372. Washington, DC: U.S. Patent and Trademark Office.
7. Doster, M.S., Nute, A.J., and Christopher, C.A. (1984b). Method of Recovering Petroleum from Underground Formations. U.S. Patent 4,457,372. Washington, DC: U.S. Patent and Trademark Office.
8. Dubief, C. (1996). Composition for Washing Keratinous Materials in Particular Hair and/or Skin. U.S. Patent No 5,536,493. Washington, DC: U.S. Patent and Trademark Office.
9. Dubief, C., and Cauwet, D. (2000). Silicon and Latex-Based Composition for the Treatment of Keratinous Substances. U.S. Patent No 6,024,946. Washington, DC: U.S. Patent and Trademark Office.
10. Ensley, H.E., Tobias, B., Pretus, H.A., Mcnamee, R.B., Jones, E.L., Browder, I.W., et al. (1994). NMR spectral analysis of a water-insoluble (1→3)-β-D-glucan isolated from Saccharomyces cerevisiae. Carbohydr. Res. 258, 307–311. doi: 10.1016/0008-6215(94)84098-9
11. Falch, B.H., Espevik, T., Ryan, L., and Stokke, B.T. (2000). The cytokine stimulating activity of (1→3)-beta-D-glucans is dependent on the triple helix conformation. Carbohydr. Res. 329, 587– 596. doi: 10.1016/S0008-6215(00)00222-6
12. Fanguy, C.J., Sanchez, J.P., and Mitchell, T.I. (2006). Method of Cementing an Area of a Borehole with Aqueous Cement Spacer System. U.S. Patent No 7,007,754. Washington, DC: U.S. Patent and Trademark Office.
13. Fariña, J.I. (1997). Producción de Escleroglucano por Sclerotium rolfsii. Doctoral thesis, Biochemistry, Universidad Nacional de Tucumán, Tucumán.
14. Fariña, J.I., Santos, V.E., Perotti, N.I., Casas, J. A., Molina, O.E., and García-Ochoa, F. (1999). Influence of the nitrogen source on the production and rheological properties of scleroglucan produced by Sclerotium rolfsii ATCC 201126. World J. Microbiol. Biotechnol. 15, 309–316. doi: 10.1023/A:1008999001451
15. Fariña, J.I., Siñeriz, F., Molina, O.E., and Perotti, N.I. (1996). Low-cost method for the preservation of Sclerotium rolfsii Proimi F-6656: inoculum standardization and its use in scleroglucan production. Biotechnol. Tech. 10, 705–708.
16. Fariña, J.I., Siñeriz, F., Molina, O.E., and Perotti, N.I. (1998). High scleroglucan production by Sclerotium rolfsii: influence of medium composition. Biotechnol. Lett. 20, 825–831. doi: 10.1023/A:1005351123156
17. Fariña, J.I., Siñeriz, F., Molina, O. E., and Perotti, N.I. (2001). Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydr. Polym. 44, 41–50.
18. Fariña, J.I., Viñarta, S.C., Cattaneo, M., and Figueroa, L.I. (2009). Structural stability of Sclerotium rolfsii ATCC 201126 b-glucan with fermentation time: a chemical, infrared spectroscopic and enzymatic approach. J. Appl. Microbiol. 106, 221–232. doi: 10.1111/j.1365- 2672.2008.03995.x
19. Fazenda, M.L., Seviour, R., McNeil, B., and Harvey, L.M. (2008). Submerged culture fermentation of “higher fungi”: the macrofungi. Adv. Appl. Microbiol. 63, 33–103. doi: 10.1016/S0065-2164(07)00002-0
20. Fernandes Silva, M., Fornari, R.C.G., Mazutti, M.A., Oliveira, D., Ferreira Padilha, F., Cichoski, A.J., et al. (2009). Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J. Food Eng. 90, 119–123. doi: 10.1016/j.jfoodeng.2008.06.010
21. Finkelman, M.A.J., and Vardanis, A. (1986). Synthesis of b-glucan by cell-free extracts of Aureobasidium pullulans. Can. J. Microbiol. 33, 123–127. doi: 10.1139/m87-021
22. Forage, R.G., Harrison, D.E.F., and Pitt, D. E. (1985). “Effect of environment on microbial activity,” in Comprehensive Biotechnology – The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine, ed. M. Moo-Young (Oxford: Pergamon Press), 253–279.
23. Fosmer, A., and Gibbons, W.R. (2011). Separation of scleroglucan and cell biomass from Sclerotium glucanicum grown in an inexpensive, by-product based medium. Int. J. Agric. Biol. Eng. 4, 52–60.
24. Fosmer, A., Gibbons, W.R., and Heisel, N.J. (2010). Reducing the cost of scleroglucan production by use of a condensed corn solubles medium. J. Biotechnol. Res. 2, 131–143.
25. García-Ochoa, F., and Gómez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27, 153–176. doi: 10.1016/j.biotechadv. 2008.10.006
26. Giavasis, I. (2013). “Production of microbial polysaccharides for use in food,” in Microbial Production of Food Ingredients, Enzymes and Nutraceuticals, eds B. McNeil, D. Archer, I. Giavasis, and L. Harvey (Sawston: Woodhead Publishing), 413–468.
27. Giavasis, I. (2014). Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr. Opin. Biotechnol. 26, 162–173. doi: 10.1016/j.copbio.2014.01.010
28. Giavasis, I., Harvey, L.M., and McNeil, B. (2005). “Scleroglucan,” in Biopolymers Online, ed. G. D. Glick (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA).
29. Gibbs, P., Seviour, R., and Schmid, F. (2000). Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit. Rev. Biotechnol. 20, 17–48. doi: 10.1080/0738855 0091144177
30. Gibbs, P.A., and Seviour, R.J. (1996). “Pullulan,” in Polysaccharides in Medicinal Applications, ed. S. Dumitriu (New York, NY: Marcel Dekker, Inc.), 59–86.
31. Grassi, M., Lapasin, R., Pricl, S., and Colombo, I. (1996). Apparent non-fickian release from a scleroglucan gel matrix. Chem. Eng. Commun. 155, 89–112. doi: 10.1080/00986449608936658
32. Griffith, W.L., and Compere, A.L. (1978). Production of a high viscosity glucan by Sclerotium rolfsii ATCC 15206. Dev. Ind. Microbiol. 19, 609–617.
33. Halleck, F.E. (1967). Polysaccharides and Methods for Production Thereof. U.S. Patent No 3,301,848. Washington, DC: U.S. Patent and Trademark Office.
34. Holzwarth, G. (1984). Xanthan and scleroglucan: structure and use in enhanced oil recovery. Dev. Ind. Microbiol. 26, 271–280.
35. Hsieh, C., Liu, C.-J., Tseng, M.-H., Lo, C.-T., and Yang, Y.-C. (2006). Effect of olive oil on the production of mycelial biomass and polysaccharides of Grifola frondosa under high oxygen concentration aeration. Enzyme Microb. Technol. 39, 434–439. doi: 10.1016/j.enzmictec. 2005.11.033
36. Johal, S.S. (1991). Recovery of Water Soluble Biopolymers from an Aqueous Solution by Employing a Polyoxide. U.S. Patent No 5,043,287. Washington, DC: U.S. Patent and Trademark Office.
37. Jong, S. C., and Donovick, R. (1989). Antitumor and antiviral substances from fungi. Adv. Appl. Microbiol. 34, 183–262. doi: 10.1016/S0065-2164(08)70319-8
38. Kang, K., and Cottrell, I. (1979). “Polysaccharides,” in Microbial Technology, 2nd Edn, eds H. Peppler and D. Perlman (New York, NY: Academic Press), 417–481.

Regular Issue Open Access Article
Volume 8
Issue 1
Received May 20, 2022
Accepted May 29, 2022
Published June 10, 2022