Identification of Promising Lead Compounds from Capsicum annuum Targeting BACE-1 for Alzheimer’s Disease Therapy: A Molecular Docking Study

[{“box”:0,”content”:”[user_role]

n

n

n

n

n

By

n

n

    n t

  1. n

      [foreach 286]n

    1. n

    n

    n

    Aisiri Vijayasimha, Samiksha Bhor

    n

    n

      n t

    1. n

    [/foreach]n

    n

    n

      [foreach 286] [if 1175 not_equal=””]n t

    1. Student, Bioinformatics Associate,Department of Bioinformatics, BioNome Private Limited, Department of Bioinformatics, BioNome Private Limited,Karnataka, Karnataka,India, India
    2. n[/if 1175][/foreach]

    n

    n

    n

    n

    n

    Abstract

    nBackground: Alzheimer’s disease (AD) is a neurodegenerative disorder affecting millions of people worldwide. Beta-secretase 1 (BACE-1) is an important therapeutic target for AD treatment. Capsicum annuum (CA) is a commonly consumed plant with potential neuroprotective properties. In this study, we aimed to identify potential lead compounds from CA that can target BACE-1 for AD therapy using molecular docking. Methods: A library of 15 compounds from CA was obtained from PubChem, and their structures were optimized using PyRx-v0.8. BACE-1 protein structure was obtained from the Protein Data Bank (PDB). Docking simulations were performed using PyRx-v0.8, and the results were analyzed using BIOVIA Discovery Studio 2019. Results: Among the studied 15 ligands, the best binding affinity was shown by 6 compounds. Capsaicin, Dihydrocapsaicin, Apigenin, Riboflavin, Quercetin, and Luteolin had a binding affinity of -6.4, -8.4, -8.4, -8.5, and -8.7 kcal/mol respectively. Luteolin had the highest binding score of -8.7 kcal/mol, this indicates its best possible inhibitory action with BACE-1. Conclusion: Our study identified Dihydrocapsaicin, and Capsaicin from CA as promising lead compounds that can target BACE-1 for AD therapy. Further in vitro and in vivo studies are needed to validate their therapeutic potential.

    n

    n

    n

    Keywords: Alzheimer’s disease, Capsicum annuum, BACE-1, molecular docking

    n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Genetic Modifications and Recombinations(ijgmr)]

    n

    [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in International Journal of Genetic Modifications and Recombinations(ijgmr)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

    n

    n

    nn


    nn

    Full Text

    nn[if 992 equals=”Open Access”]https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/06/c0b4e0b8-43-52-identification-of-promising-lead-compounds-from-capsicum.pdfn[else]nnvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {ndocument.write(‘‘);ndocument.write(‘https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/06/c0b4e0b8-43-52-identification-of-promising-lead-compounds-from-capsicum.pdf’);n} else if (fieldValue === ‘administrator’) {ndocument.write(‘‘);ndocument.write(”);n}else if (fieldValue === ‘ijgmr’) {n document.write(‘‘);n} else {n document.write(‘ ‘);n}nn[/if 992]n


    n[if 379 not_equal=””]n

    Browse Figures

    n

    n

    [foreach 379]n

    n[/foreach]n

    nn

    n

    n[/if 379]n

    n

    References

    n[if 1104 equals=””]n

    1. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health [Internet]. 2022;7(2):e105–25. Available from: http://dx.doi.org/10.1016/S2468-2667(21)00249-8
    2. Sharma S. Alzheimer’s disease: Causes, treatment & basic science review. IP Int J Compr Adv Pharmacol [Internet]. 2021;6(3):108–16. Available from: http://dx.doi.org/10.18231/
      ijcap.2021.020

     

    1. Atri A. Current and future treatments in Alzheimer’s disease. Semin Neurol [Internet]. 2019;39(2):227–40. Available from: http://dx.doi.org/10.1055/s-0039-1678581
    2. Geerts H, Grossberg GT. Pharmacology of acetylcholinesterase inhibitors and N-methyl-D-aspartate receptors for combination therapy in the treatment of Alzheimer’s disease. J Clin Pharmacol [Internet]. 2006;46(7 Suppl 1):8S-16S. Available from: http://dx.doi.org/
      1177/0091270006288734

     

    1. Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, et al. The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry [Internet]. 2021;89(8):745–56. Available from: http://dx.doi.org/10.1016/j.biopsych.2020.02.001

     

    1. Exploring the pathogenesis of Alzheimer’s disease in basal forebrain cholinergic neurons: Converging insights from alternative hypotheses.
    2. Akram M, Nawaz A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen Res [Internet]. 2017;12(4):660–70. Available from: http://dx.doi.org/10.4103/1673-5374.205108
    3. Thuphairo K, Sornchan P, Suttisansanee U. Bioactive compounds, antioxidant activity and inhibition of key enzymes relevant to Alzheimer’s disease from sweet pepper (Capsicum annuum) extracts. Prev Nutr Food Sci [Internet]. 2019;24(3):327–37. Available from: http://dx.doi.org/10.3746/pnf.2019.24.3.327
    4. Bakrim S, Aboulaghras S, El Menyiy N, El Omari N, Assaggaf H, Lee L-H, et al. Phytochemical compounds and nanoparticles as phytochemical delivery systems for Alzheimer’s disease management. Molecules [Internet]. 2022;27(24):9043. Available from: http://dx.doi.org/10.3390/molecules27249043
    5. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics, Karthikeyan Mohanraj#, Bagavathy Shanmugam Karthikeyan#, R.P. Vivek-Ananth#, R.P. Bharath Chand, S.R. Aparna, P. Mangalapandi and Areejit Samal*, Scientific Reports 8:4329 (2018).
    6. Vassar R, Kandalepas PC. The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer’s disease. Alzheimers Res Ther [Internet]. 2011;3(3):20. Available from: http://dx.doi.org/10.1186/alzrt82
    7. Jabir NR, Rehman MT, Alsolami K, Shakil S, Zughaibi TA, Alserihi RF, et al. Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: in pursuit of Alzheimer’s treatment. Ann Med [Internet]. 2021;53(1):2332–44. Available from: http://dx.doi.org/10.1080/07853890.2021.2009124
    8. Nelson PT, Jicha GA, Schmitt FA, Liu H, Davis DG, Mendiondo MS, et al. Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles “do count” when staging disease severity: Neuritic plaques and neurofibrillary tangles “do count” when staging disease severity. J Neuropathol Exp Neurol [Internet].2007;66(12):1136–46.Availablefrom: http://dx.doi.org/10.1097/nen.0b013e31815c5efb
    9. Rodriguez RD, Molina M, Leite RP, Sabadin R, Takada LT, Suemoto CK, et al. P1‐359: Neuropathological findings of an early‐onset dementia case with atypical Alzheimer’s disease: How challenging can the clinical diagnosis of mixed ad be? Alzheimers Dement [Internet]. 2018;14(7S_Part_8):P432–P432. Available from: http://dx.doi.org/10.1016/j.jalz.2018.06.367
    10. Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS [Internet]. 2020;17(1):69. Available from: http://dx.doi.org/10.1186/s12987-020-00230-3
    11. Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, et al. Exploring the therapeutic potential of phytochemicals in Alzheimer’s disease: Focus on polyphenols and monoterpenes. Front Pharmacol [Internet]. 2022;13:876614. Available from: http://dx.doi.org/10.3389/
      2022.876614
    12. Marashly ET, Bohlega SA. Riboflavin has neuroprotective potential: Focus on Parkinson’s disease and migraine. Front Neurol [Internet]. 2017;8:333. Available from: http://dx.doi.org/10.3389/
      2017.00333
    13. Dihydrocapsaicin Attenuates Blood Brain Barrier and Cerebral Damage in Focal Cerebral Ischemia/Reperfusion via Oxidative Stress and Inflammatory Adchara Janyou1, Piyawadee Wicha1.
    14. Pegorini S, Braida D, Verzoni C, Guerini-Rocco C, Consalez GG, Croci L, et al. Capsaicin exhibits neuroprotective effects in a model of transient global cerebral ischemia in Mongolian gerbils. Br J Pharmacol [Internet]. 2005;144(5):727–35. Available from: http://dx.doi.org/10.1038/
      bjp.0706115

    nn[/if 1104][if 1104 not_equal=””]n

      [foreach 1102]n t

    1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
    2. n[/foreach]

    n[/if 1104]

    nn


    nn[if 1114 equals=”Yes”]n

    n[/if 1114]

    n

    n

    Regular Issue Subscription Original Research

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    Volume 01
    Issue 01
    Received April 13, 2023
    Accepted May 6, 2023
    Published May 18, 2023

    n

    n

    n

    [if 1190 not_equal=””]n

    Editor

    n

    [foreach 1188]n

    n[/foreach]

    n[/if 1190] [if 1177 not_equal=””]n

    Reviewer

    n

    [foreach 1176]n

    n[/foreach]

    n[/if 1177]

    n

    nn .post-views{n text-align: center;n }n .ALLreveiwers img,.ALLeditors img{n width: 50px;n height: 50px;n border-radius: 50px;n margin: 10px;n }n .ALLreveiwers,.ALLeditors{n border-bottom:1px solid black;n }n .modaltext{color:white; padding: 0px 30px 0px 30px; text-decoration:none;}n .modaltext:hover{color:black background-color:rgb(255 221 204); color:black;}n .modal-content{ margin-top: 50%;}n Edit n function myfun() {n x=document.getElementById(“editor”);n y=document.getElementById(“down”);n z=document.getElementById(“up”);n if(x.style.display==”none”){n x.style.display=”block”;n }n else {n x.style.display=”none”;n }n if(y.style.display==”none”){n y.style.display=”block”;n }n else {n y.style.display=”none”;n }n if(z.style.display==”none”){n z.style.display=”block”;n }n else {n z.style.display=”none”;n }n }n function myfun2() {n x=document.getElementById(“reviewer”);n y=document.getElementById(“down2”);n z=document.getElementById(“up2″);n if(x.style.display==”none”){n x.style.display=”block”;n }n else {n x.style.display=”none”;n }n if(y.style.display==”none”){n y.style.display=”block”;n }n else {n y.style.display=”none”;n }n if(z.style.display==”none”){n z.style.display=”block”;n }n else {n z.style.display=”none”;n }n }n n table, tr, td{n padding: 10px;n border: none;n }n

    n

    n

    n h2{font-size:16px !important; font-family: ‘Roboto’, Slab !important; line-height: 1.4em;}n h3{font-size:18px !important;font-family: ‘Roboto’, Slab !important;}n h4{font-family: ‘Roboto’, Slab !important;}n a{color:blue; font-size:15px !important;font-family: ‘Roboto’, Slab !important;}n li, p{font-size: 15px !important; font-family: ‘Roboto’, Slab !important; text-align: justify;}n .authdiv img{max-width:17px; max-height:17px;}n .authdiv{display:flex; padding: 1px 2px;”}n n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;}n else {x.style.display = “Block”;}}n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);});n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);});n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));}n function currentSlide(n) {n showSlides((slideIndex = n));}n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) {slideIndex = 1;}n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n

    “}]