Numerical Investigation of Heat Transfer Enhancement in Micro-Channel Cooling Using Finite Element Analysis

[{“box”:0,”content”:”

n

Year : December 4, 2023 | Volume : 01 | Issue : 01 | Page : 36-44

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Dr. Ashis Acharjee, Nabarun Biswas, Prasun Chakraborti

  1. [/foreach]

    n

n

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Assistant Professor, Assistant Professor, Professor, Mechanical Engineering Department, NIT Agartala, Mechanical Engineering Department, NIT Agartala, Mechanical Engineering Department, NIT Agartala, Tripura, Tripura, Tripura, India, India, India
  2. n[/if 1175][/foreach]

n

n

Abstract

nDue to the enormous heat fluxes emitted by modern electronic chips, there is a persistent need to enhance the efficiency of cooling systems. This study’s focus is on optimizing heat transfer in micro-channel heat sinks that use liquid cooling. Geometric changes and the use of nano-fluids as coolants in place of water are performed to achieve this goal with little energy consumption. Numerical analysis of pipe micro-channel fluid flow and heat transfer. is presented, along with a systematic and accurate methodology for doing such an analysis provided by this work. This study examines the temperature and velocity of water passing via a little conduit. In addition, the micro-channel within the pipe is discretized using Finite Element Method. Adding domain elements and nodes discretizes finer components. MATLAB codes are designed for this. The simulation results reveal that entrance velocity variations greatly affect fluid flow and temperature research. The temperature fields affect energy sources in the domain’s midsection. The findings show that the fluid flow is upward and that the heat transfer mode is conductive. The investigation examines how adding a heat source to the temperature field changes things. This work supports the concept that our computation matches that of other academics who have studied similar fundamental geometries. FEM is effective for analyzing constant flow due to its simple measuring techniques.

n

n

n

Keywords: Heat transfer, Simulation, Finite Element Method, flow, temperature, entrance velocity

n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Energy and Thermal Applications(ijeta)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in International Journal of Energy and Thermal Applications(ijeta)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Dr. Ashis Acharjee, Nabarun Biswas, Prasun Chakraborti Numerical Investigation of Heat Transfer Enhancement in Micro-Channel Cooling Using Finite Element Analysis ijeta December 4, 2023; 01:36-44

n

How to cite this URL: Dr. Ashis Acharjee, Nabarun Biswas, Prasun Chakraborti Numerical Investigation of Heat Transfer Enhancement in Micro-Channel Cooling Using Finite Element Analysis ijeta December 4, 2023 {cited December 4, 2023};01:36-44. Available from: https://journals.stmjournals.com/ijeta/article=December 4, 2023/view=0/

nn


nn[if 992 equals=”Open Access”] Full Text PDF[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘Full Text PDF‘);n }nelse if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }nelse if (fieldValue == ‘ijeta’) { document.write(‘Full Text PDF‘); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]nn

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Thompson, Erik G., Introduction to the Finite Element Method: Theory Programming and Applications, John Wiley & Sons Inc, 2004
  2. Bejan A, Convection Heat transfer, John Wiley and Sons Inc, 1984
  3. Winget J. M, Hughes T.J.R., Solution algorithms for nonlinear transient heat conduction analysis employing element by-element iterative strategies, Computer Methods in Applied Mechanics and Engineering, 1985; 52:711–815.
  4. Johan Z, Hughes T.J.R, Shakib F., A globally convergent matrix-free algorithm for implicit time-marching schemes arising in Finite element analysis in Fluids, Computer Methods in Applied Mechanics and Engineering 1991; 87:281–304.
  5. Jacob BP, Ebecken NFF., Adaptive time integration of nonlinear structural dynamic problems. European Journal of Mechanics and Solids 1993; 12(2):277–298.
  6. Dhamodaran, M., Dhanasekaran, R. (2014).C omparison of computational electromagnetics for electrostatic analysis. International Journal of Energy Optimization and Engineering, 3 (3), 86–100.
  7. Raine, A.B., Aslam, N., Underwood, C.P., Danaher, S.(2015). Development of an ultrasonic airflow measurement device for ducted air. Sensors, 15 (5),10705–10722.
  8. Daev, Z.A. (2015). A comparative analysis of the discharge coefficients of variable pressure-drop flowmeters. Measurement Techniques, 58 (3), 323–326.
  9. Jiang, W., Zhang, T., Xu, Y. et al. (2016). The effects of fluid viscosity on the orifice rotameter. Measurement Science Review, 16 (2), 87–95.
  10. Finlayson, B.A. (1970). Convective instability offerromagnetic fluids. Journal of Fluid Mechanics, 40,753–767.
  11. Baker, R.C. (2004). The impact of component variation in the manufacturing process on variable area (VA)flowmeter performance. Flow Measurement and Instrumentation, 15 (4), 207–213.
  12. Guiggiani, M. (1999). The evaluation of Cauchy principal value integrals in the boundary element method–a review. Mathematical and Computer Modelling, 15 (3), 175–184.
  13. Schena, E., Massaroni, C., Saccomandi, P., Cecchini, S.(2015). Flow measurement in mechanical ventilation: A review. Medical Engineering & Physics, 37 (3), 257–264.
  14. Ning, J., Peng, J. (2009). A temperature compensation method based on neural net for metal tube rotameter. In International Conference on Transportation Engineering 2009. ASCE, 2334–2339.
  15. Turkowski, M. (2004). Influence of fluid properties onthe characteristics of a mechanical oscillator flowmeter. Measurement, 35 (1), 11–18.
  16. Turkowski, M. (2003). Progress towards the optimization of a mechanical oscillator flowmeter. Flow Measurement and Instrumentation, 14 (1–2), 13–21.
  17. Gong, Y., Liu, Q.F., Zhang, C.L., Wu, Y., Rao, Y.R., Peng, G.D. (2015). Microfluidic flow rate detection with a large dynamic range by optical manipulation. IEEE Photonics Technology Letters, 27 (23), 2508–2511.
  18. Sadiku, M.N.O. (2007) Elements of Electromagnetics,4th Edition. Oxford University Press,
    740–748.
  19. Thompson, E.G. (2004) Introduction to the Finite Element Method: Theory Programming and Applications. John Wiley & Sons.
  20. Jin JM. (2015). The finite element method in electromagnetics. John Wiley & Sons. Feb 18.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

Regular Issue Subscription Review Article

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 01
Issue 01
Received October 1, 2023
Accepted October 16, 2023
Published December 4, 2023

n

n

n

[if 1190 not_equal=””]n

Editor

n

[foreach 1188]n

n[/foreach]

n[/if 1190] [if 1177 not_equal=””]n

Reviewer

n

[foreach 1176]n

n[/foreach]

n[/if 1177]

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n n function myfun() {n x = document.getElementById(“editor”);n y = document.getElementById(“down”);n z = document.getElementById(“up”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n function myfun2() {n x = document.getElementById(“reviewer”);n y = document.getElementById(“down2”);n z = document.getElementById(“up2”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n”}]