Electromechanical Modeling of Microscale Fluidic Systems with Electro Kinetic

[{“box”:0,”content”:”

n

Year : December 1, 2023 | Volume : 01 | Issue : 01 | Page : 18-22

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Nishant Varshney

  1. [/foreach]

    n

n

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Student, Amity School of Engineering and Technology ,Mechanical Engineering, Noida, Gautam Budh Nagar, Uttar Pradesh,, Uttar Pradesh, India
  2. n[/if 1175][/foreach]

n

n

Abstract

nDue to their capacity to carry out complex fluid manipulations at the microscale, microfluidic systems have become more popular in a variety of applications. For a variety of industries, including biomedical diagnostics, chemical analysis, and environmental monitoring, achieving precise and effective fluid control is essential. The electromechanical modeling of microscale fluidic systems using electro kinetic actuation is the main topic of this research study. We propose a thorough framework for comprehending and simulating the electromechanical behavior of these systems by examining the complex interaction between electric fields, fluid flow, and mechanical deformation. This framework aids in improving performance and optimizing device design. This study closes the gap between theoretical understanding and real-world application by delving deeply into electro kinetic mechanisms, governing equations, boundary conditions, and simulation methods. Evaluation techniques and strategy is in real-world settings. The problems, possible applications, and future course of electromechanical modeling around microscale fluidic systems with electro kinetic actuation.

n

n

n

Keywords: Microfluidic systems, electromechanical modeling, fluid flow, mechanical deformation, electric fields

n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Electro-Mechanics and Material Behavior(ijemb)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in International Journal of Electro-Mechanics and Material Behavior(ijemb)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Nishant Varshney Electromechanical Modeling of Microscale Fluidic Systems with Electro Kinetic ijemb December 1, 2023; 01:18-22

n

How to cite this URL: Nishant Varshney Electromechanical Modeling of Microscale Fluidic Systems with Electro Kinetic ijemb December 1, 2023 {cited December 1, 2023};01:18-22. Available from: https://journals.stmjournals.com/ijemb/article=December 1, 2023/view=0/

nn


nn[if 992 equals=”Open Access”] Full Text PDF[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘Full Text PDF‘);n }nelse if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }nelse if (fieldValue == ‘ijemb’) { document.write(‘Full Text PDF‘); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]nn

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Coleman JT, Sinton D (2005) A sequential injection microfluidic mixing strategy. Microfluid Nanofluid 1:319–327
  2. Coleman JT, Mckechnie J, Sinton D (2006) High-efficiency electro-kinetic micromixing through symmetric sequential injection and expansion. Lab Chip 6:1033–103
  3. Anderson JL, Idol WK (1985) Electro osmosis through pores with nonuniformly charged walls. Chem Eng Commun 38:93–106
  4. Bazant MZ, Ben Y (2006) Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip 6:1455–146
  5. Anderson JL, Idol WK (1985) Electro osmosis through pores with nonuniformly charged walls. Chem Eng Commun 38:93–106
  6. Bazant MZ, Ben Y (2006) Theoretical prediction of fast 3D A Celectro-osmotic pumps. Lab Chip 6:1455–146
  7. Krishnamoorthy S, Feng J, Henry AC, Locascio LE, Hickman JJ, Sundaram S (2006) Simulation and experimental characteriza-tion of electroosmotic flow in surface modified channels. Microfluid Nanofluid 2:345–355
  8. Lastochkin D, Zhou R, Wang P, Ben Y, Chang H-C (2004)Electro kinetic micropump and micromixer design based on acfaradic polarization. J Appl Phys 96:1730–1733
  9. Griffiths SK, Nilson RH (2000) Band spreading in two-dimensional microchannel turns for electrokinetic species transport. Anal Chem 72: 5473–5482,
  10. Hardt S, Drese KS, HesselV, Scho¨nfeld F (2005) Passive micromixers for applications in the microreactor and lTAS fields. Microfluid Nanofluid 1:108–118
  11. Tian F, Li B, Kwok DY (2005) Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchan-nels with nonuniform surface potentials. Langmuir 21:1126–1131
  12. Wang JK, Wang M, Li ZX (2005a) Lattice Boltzmann simulations of mixing enhancement by the electroosmotic flow in microchan-nels. Mod Phys Lett B 19:1515–1518

 

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

Regular Issue Subscription Review Article

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 01
Issue 01
Received August 11, 2023
Accepted August 29, 2023
Published December 1, 2023

n

n

n

[if 1190 not_equal=””]n

Editor

n

[foreach 1188]n

n[/foreach]

n[/if 1190] [if 1177 not_equal=””]n

Reviewer

n

[foreach 1176]n

n[/foreach]

n[/if 1177]

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n n function myfun() {n x = document.getElementById(“editor”);n y = document.getElementById(“down”);n z = document.getElementById(“up”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n function myfun2() {n x = document.getElementById(“reviewer”);n y = document.getElementById(“down2”);n z = document.getElementById(“up2”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n”}]