Sentimental Analysis in Twitter Using Python

Year : 2023 | Volume : 01 | Issue : 01 | Page : 28-32
By

    Rukmini Ankush Dhamdhere

  1. Nikita Makarand Dhumal

  2. Mayuri Keshav Gawali

  3. Ganesh Pramod Kulkarni

  1. Student, Department of Information Technology, NBN Sinhgad School of Engineering, Pune, Maharashtra, India
  2. Student, Department of Information Technology, NBN Sinhgad School of Engineering, Pune, Maharashtra, India
  3. Student, Department of Information Technology, NBN Sinhgad School of Engineering, Pune, Maharashtra, India
  4. Student, Department of Information Technology, NBN Sinhgad School of Engineering, Pune, Maharashtra, India

Abstract

Social media websites are a great source of information because they have a lot of data. For instance, Twitter generates millions of packets of text. These statistics may be employed for commercial or charitable purposes. One of the hottest new buzzwords for many business strategies is the analysis of data from these social networking websites. Sentimental analysis can be used to manage election campaigns, global health problems, technical concepts, inventions, entertainment, and natural resource issues. Using Stanford NLP Libraries implemented in SaaS (cloud), which will manage all global current affairs, our proposed study assesses sentimental analysis of Twitter data. Implementing the cloud will improve speed to market, result growth, and process efficiency.

Keywords: Sentimental analysis, natural language processing, Twitter4j, NLP, JSON

[This article belongs to International Journal of Computer Science Languages(ijcsl)]

How to cite this article: Rukmini Ankush Dhamdhere, Nikita Makarand Dhumal, Mayuri Keshav Gawali, Ganesh Pramod Kulkarni Sentimental Analysis in Twitter Using Python ijcsl 2023; 01:28-32
How to cite this URL: Rukmini Ankush Dhamdhere, Nikita Makarand Dhumal, Mayuri Keshav Gawali, Ganesh Pramod Kulkarni Sentimental Analysis in Twitter Using Python ijcsl 2023 {cited 2023 Jul 06};01:28-32. Available from: https://journals.stmjournals.com/ijcsl/article=2023/view=114882

Browse Figures

References

  1. Hu Y, John A, Wang F, Kambhampati S. Et-lda: joint topic modeling for aligning events and their twitter feedback. AAAI. Proceedings of the AAAI conference on artificial intelligence 2012; 26 (1): 59–65. doi: 10.1609/aaai.v26i1.8106.
  2. Amolik A, Jivane N, Bhandari M. Dr MV. Twitter sentiment analysis of movie. Int J Eng Technol. 2016; 7 (6): 2038–2044.
  3. Zhang L, Hall M, Bastola D. Utilizing Twitter data for analysis of chemotherapy. Int J Med Inform. 2018; 120: 92–100. doi: 10.1016/j.ijmedinf.2018.10.002, PMID 30409350.
  4. Kristiyanti DA, Wahyudi M. Feature selection based on Genetic algorithm, particle swarm optimization and principal component analysis for opinion mining cosmetic product review. Proceedings of the 5th International Conference on Cyber and IT Service Management (CITSM); 2017 Aug 8; Denpasar, Indonesia: IEEE Publications; 2017. 1–6 pp. doi: 10.1109/CITSM.2017.8089278.
  5. Zvarevashe K, Olugbara OO. A framework for sentiment analysis with opinion mining of hotel reviews. Proceedings of the 2018 Conference on information communications technology and society (ICTAS); 2018 Mar 8; Durban, South Africa: IEEE; 2018. 1–4 pp.
  6. Ahuja S, Dubey G. Clustering and sentiment analysis on Twitter data. Proceedings of the 2017 2nd International Conference on Telecommunication and Networks (TEL-NET); 2017 Aug 10; Noida, India: IEEE; 2018. 1–5 pp.
  7. Gupta B, Negi M, Vishwakarma K, Rawat G, Badhani P, Tech B. Study of Twitter sentiment analysis using machine learning algorithms on Python. Intl J Comp Appl. 2017; 165 (9): 29–
  8. Farghaly A, Shaalan K. Arabic natural language processing: challenges and solutions. ACM Transactions on Asian Language Information Processing (TALIP). 2009; 8 (4): 1–22.
  9. Do TN, Poulet F. Parallel learning of local SVM algorithms for classifying large datasets. In: Transactions on Large-Scale Data-and Knowledge-Centered Systems XXXI: Special Issue on Data and Security Engineering 2017 Berlin, Germany: Springer; 2017. pp. 67–93.
  10. Cao N, Shi C, Lin S, Lu J, Lin YR, Lin CY. Targetvue: visual analysis of anomalous user behaviors in online communication systems. IEEE Trans Vis Comput Graph. 2015; 22 (1): 280–289.
  11. Antinasari P, Perdana RS, Fauzi MA. Analisis sentimen tentang opini film pada dokumen twitter berbahasa indonesia menggunakan naive bayes dengan perbaikan kata tidak baku. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. 2017; 1 (12): 1733–17
  12. Huq MR, Ahmad A, Rahman A. Sentiment analysis on Twitter data using KNN and SVM. Int J Adv Comput Sci Appl. 2017; 8 (6): 19–25.
  13. Kharde V, Sonawane P. (2016). Sentiment analysis of twitter data: a survey of techniques. [Online] arXiv preprint. Available at https://arxiv.org/abs/1601.06971 [Accessed on July 2023]

Regular Issue Subscription Review Article
Volume 01
Issue 01
Received June 7, 2023
Accepted June 23, 2023
Published July 6, 2023