Unraveling the Nexus: Parkinson’s disease, Alpha-Synuclein, Desulfovibrio, and the Gut Microbiome

[{“box”:0,”content”:”[if 992 equals=”Open Access”]n

n

n

n

Open Access

nn

n

n[/if 992]n

n

Year : May 27, 2024 at 4:25 pm | [if 1553 equals=””] Volume : [else] Volume :[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : | Page : –

n

n

n

n

n

n

By

n

[foreach 286]n

n

n

Fatima Abdul Azeez

n

    n t

  • n

n

n[/foreach]

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Student Department of biotechnology, Mar Athanasius College, Kothamangalam, Kerala India
  2. n[/if 1175][/foreach]

n[/if 2099][if 2099 equals=”Yes”][/if 2099]n

n

Abstract

nParkinson’s disease (PD) is now recognized as a chronic condition which is once considered a highly intricate disorder involving the central, autonomic, and enteric nervous systems. The prevailing perspective attributes the disease by the formation of Lewy bodies, primarily triggered by the misfolding of α-Synuclein, leading to the demise of dopaminergic neurons in the substantia nigra. Constipation, one of the most common non-motor symptoms in PD patients, is believed to be influenced by the composition of gut bacteria. The gastrointestinal tract acts as a significant point of entry through vagus nerve for potentially harmful microorganisms that can initiate the pathological process of PD. The vagus nerve is proposed to play a role in transmitting signals leading to the over-expression and accumulation of α-Synuclein in the brain. In a study, it was noted that individuals with PD displayed an elevated occurrence of bacteria belonging to the Desulfovibrionaceae family. Desulfovibrio (DSV) are sulfate-reducing bacteria (SRB) that are established as commensal bacteria in the human gastrointestinal tract. Desulfovibrio releases certain metabolites that triggers the aggregation of alpha-synuclein leading to play a role in the pathogenesis of PD. The presence of DSV can lead to a decline in bacterial metabolites, which plays a crucial role in gut health and contributes to the effects observed in individuals with PD. This review consolidates current knowledge on the connection between DSV and PD, emphasizing the role of the gut environment. We address the possibilities that could be considered for reducing the α-Synuclein aggregation in this study by emphasising desulfovibrio.

n

n

n

Keywords: Parkinson’s disease, Neurodegenerative Disease, Desulfovibrio, α-Synuclein, Cellular toxicity.

n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Cell Biology and Cellular Functions(ijcbcf)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in International Journal of Cell Biology and Cellular Functions(ijcbcf)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Fatima Abdul Azeez. Unraveling the Nexus: Parkinson’s disease, Alpha-Synuclein, Desulfovibrio, and the Gut Microbiome. International Journal of Cell Biology and Cellular Functions. May 27, 2024; ():-.

n

How to cite this URL: Fatima Abdul Azeez. Unraveling the Nexus: Parkinson’s disease, Alpha-Synuclein, Desulfovibrio, and the Gut Microbiome. International Journal of Cell Biology and Cellular Functions. May 27, 2024; ():-. Available from: https://journals.stmjournals.com/ijcbcf/article=May 27, 2024/view=0

nn[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] n[if 992 not_equal=”Open Access”]

[/if 992]n[if 992 not_equal=”Open Access”]


n


n

n[/if 992]nn[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

n

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Nie S, Wang J, Deng Y, Ye Z, Ge Y. Inflammatory microbes and genes as potential biomarkers of Parkinson’s disease. NPJ Biofilms Microbiomes. 2022 Dec 1;8(1).
  2. Yamashita KY, Bhoopatiraju S, Silverglate BD, Grossberg GT. Biomarkers in Parkinson’s disease: A state of the art review. Vol. 9, Biomarkers in Neuropsychiatry. Elsevier B.V.; 2023.
  3. Nakahara K, Nakane S, Ishii K, Ikeda T, Ando Y. Gut microbiota of Parkinson’s disease in an appendectomy cohort: a preliminary study. Sci Rep. 2023 Dec 1;13(1).
  4. Ryman S, Vakhtin AA, Richardson SP, Lin HC. Microbiome–gut–brain dysfunction in prodromal and symptomatic Lewy body diseases. Vol. 270, Journal of Neurology. Springer Science and Business Media Deutschland GmbH; 2023. p. 746–58.
  5. Yang X, Qian Y, Xu S, Song Y, Xiao Q. Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of Parkinson’s disease. Front Aging Neurosci. 2018 Jan 8;9(JAN).
  6. Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, et al. The gut microbiota–brain axis in neurological disorder. Vol. 17, Frontiers in Neuroscience. Frontiers Media SA; 2023.
  7. Liu J, Xu F, Nie Z, Shao L. Gut Microbiota Approach—A New Strategy to Treat Parkinson’s Disease. Vol. 10, Frontiers in Cellular and Infection Microbiology. Frontiers Media S.A.; 2020.
  8. Hey G, Nair N, Klann E, Gurrala A, Safarpour D, Mai V, et al. Therapies for Parkinson’s disease and the gut microbiome: evidence for bidirectional connection. Vol. 15, Frontiers in Aging Neuroscience. Frontiers Media S.A.; 2023.
  9. Rajput C, Sarkar A, Sachan N, Rawat N, Singh MP. Is Gut Dysbiosis an Epicenter of Parkinson’s Disease? Vol. 46, Neurochemical Research. Springer; 2021. p. 425–38.
  10. Nowak JM, Kopczyński M, Friedman A, Koziorowski D, Figura M. Microbiota Dysbiosis in Parkinson Disease—In Search of a Biomarker. Vol. 10, Biomedicines. MDPI; 2022.
  11. Murros KE, Murros K. Hydrogen Sulfide Produced May Induce Parkinson’s Disease Subjects: Neurosciences.
  12. Camerucci E, Stang CD, Hajeb M, Turcano P, Mullan AF, Martin P, et al. Early-Onset Parkinsonism and Early-Onset Parkinson’s Disease: A Population-Based Study (2010-2015). Vol. 11, Journal of Parkinson’s Disease. IOS Press BV; 2021. p. 1197–207.
  13. Sun MF, Shen YQ. Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease. Vol. 45, Ageing Research Reviews. Elsevier Ireland Ltd; 2018. p. 53–61.
  14. Henderson MX, Trojanowski JQ, Lee VMY. α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Vol. 709, Neuroscience Letters. Elsevier Ireland Ltd; 2019.
  15. Srinivasan E, Chandrasekhar G, Chandrasekar P, Anbarasu K, Vickram AS, Karunakaran R, et al. Alpha-Synuclein Aggregation in Parkinson’s Disease. Vol. 8, Frontiers in Medicine. Frontiers Media S.A.; 2021.
  16. Perez-Pardo P, Hartog M, Garssen J, Kraneveld AD. Microbes Tickling Your Tummy: the Importance of the Gut-Brain Axis in Parkinson’s Disease. Vol. 4, Current Behavioral Neuroscience Reports. Springer; 2017. p. 361–8.
  17. Ryman S, Vakhtin AA, Richardson SP, Lin HC. Microbiome–gut–brain dysfunction in prodromal and symptomatic Lewy body diseases. Vol. 270, Journal of Neurology. Springer Science and Business Media Deutschland GmbH; 2023. p. 746–58.
  18. Singh Y, Trautwein C, Romani J, Salker MS, Neckel PH, Fraccaroli I, et al. Overexpression of human alpha-Synuclein leads to dysregulated microbiome/metabolites with ageing in a rat model of Parkinson disease. Mol Neurodegener. 2023 Dec 1;18(1).
  19. Huang Y, Liao J, Liu X, Zhong Y, Cai X, Long L. Review: The Role of Intestinal Dysbiosis in Parkinson’s Disease. Vol. 11, Frontiers in Cellular and Infection Microbiology. Frontiers Media S.A.; 2021.
  20. Shen T, Yue Y, He T, Huang C, Qu B, Lv W, et al. The Association Between the Gut Microbiota and Parkinson’s Disease, a Meta-Analysis. Vol. 13, Frontiers in Aging Neuroscience. Frontiers Media S.A.; 2021.
  21. Savitt D, Jankovic J. Targeting α-Synuclein in Parkinson’s Disease: Progress Towards the Development of Disease-Modifying Therapeutics. Vol. 79, Drugs. Springer International Publishing; 2019. p. 797–810.
  22. Fitzgerald E, Murphy S, Martinson HA. Alpha-synuclein pathology and the role of the microbiota in Parkinson’s disease. Vol. 13, Frontiers in Neuroscience. Frontiers Media S.A.; 2019.
  23. Chen ZJ, Liang CY, Yang LQ, Ren SM, Xia YM, Cui L, et al. Association of Parkinson’s Disease With Microbes and Microbiological Therapy. Vol. 11, Frontiers in Cellular and Infection Microbiology. Frontiers Media S.A.; 2021.
  24. Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting Alpha-Synuclein as a Therapy for Parkinson’s Disease. Vol. 12, Frontiers in Molecular Neuroscience. Frontiers Media S.A.; 2019.
  25. Munoz-Pinto MF, Empadinhas N, Cardoso SM. The neuromicrobiology of Parkinson’s disease: A unifying theory. Vol. 70, Ageing Research Reviews. Elsevier Ireland Ltd; 2021.
  26. Zhu R, Luo Y, Li S, Wang Z. The role of microglial autophagy in Parkinson’s disease. Vol. 14, Frontiers in Aging Neuroscience. Frontiers Media S.A.; 2022.
  27. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Björklund T, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014 Nov 14;128(6):805–20.
  28. Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain Axis: From Motility to Mood. Vol. 160, Gastroenterology. W.B. Saunders; 2021. p. 1486–501.
  29. Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Vol. 14, Cell Death and Disease. Springer Nature; 2023.
  30. Angius F, Mocci I, Ercoli T, Loy F, Fadda L, Palmas MF, et al. Combined measure of salivary alpha-synuclein species as diagnostic biomarker for Parkinson’s disease. J Neurol. 2023 Nov 1;270(11):5613–21.
  31. Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting Alpha-Synuclein as a Therapy for Parkinson’s Disease. Vol. 12, Frontiers in Molecular Neuroscience. Frontiers Media S.A.; 2019.
  32. Kalyanaraman B, Cheng G, Hardy M. Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson’s disease and therapeutic implications. Vol. 71, Redox Biology. Elsevier B.V.; 2024.
  33. Biotechnology for Food Science.
  34. Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, et al. “Janus-Faced” α-Synuclein: Role in Parkinson’s Disease. Vol. 9, Frontiers in Cell and Developmental Biology. Frontiers Media S.A.; 2021.
  35. Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. Conference on diet and digestive disease symposium 2: Sensing and signalling of the gut environment: Scfa: Mechanisms and functional importance in the gut. In: Proceedings of the Nutrition Society. Cambridge University Press; 2021. p. 37–49.
  36. Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L, et al. Gut Microbiota: A Novel Therapeutic Target for Parkinson’s Disease. Vol. 13, Frontiers in Immunology. Frontiers Media S.A.; 2022.
  37. Baizabal-Carvallo JF, Alonso-Juarez M. The Link between Gut Dysbiosis and Neuroinflammation in Parkinson’s Disease. Vol. 432, Neuroscience. Elsevier Ltd; 2020. p. 160–73.
  38. Metta V, Leta V, Mrudula KR, Prashanth LK, Goyal V, Borgohain R, et al. Gastrointestinal dysfunction in Parkinson’s disease: molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. Vol. 269, Journal of Neurology. Springer Science and Business Media Deutschland GmbH; 2022. p. 1154–63.
  39. Hashish S, Salama M. The Role of an Altered Gut Microbiome in Parkinson’s Disease: A Narrative Review. Appl Microbiol. 2023 May 10;3(2):429–47.
  40. Jackson A, Forsyth CB, Shaikh M, Voigt RM, Engen PA, Ramirez V, et al. Diet in Parkinson’s Disease: Critical Role for the Microbiome. Vol. 10, Frontiers in Neurology. Frontiers Media S.A.; 2019.
  41. Xie A, Ensink E, Li P, Gordevičius J, Marshall LL, George S, et al. Bacterial Butyrate in Parkinson’s Disease Is Linked to Epigenetic Changes and Depressive Symptoms. Movement Disorders. 2022 Aug 1;37(8):1644–53.
  42. Xie A, Ensink E, Li P, Gordevičius J, Marshall LL, George S, et al. Butyrate and related epigenetic changes link Parkinson’s disease to inflammatory bowel disease and depressive symptoms. Available from: https://doi.org/10.1101/2021.09.17.21263343
  43. Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C. Role of the Gut–Brain Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson’s Disease. Vol. 10, Microorganisms. MDPI; 2022.
  44. Elford JD, Becht N, Garssen J, Kraneveld AD, Perez-Pardo P. Buty and the beast: the complex role of butyrate in Parkinson’s disease. Vol. 15, Frontiers in Pharmacology. Frontiers Media SA; 2024.
  45. Murros KE, Huynh VA, Takala TM, Saris PEJ. Desulfovibrio Bacteria Are Associated With Parkinson’s Disease. Front Cell Infect Microbiol. 2021 May 3;11.
  46. Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, et al. The gut microbiota–brain axis in neurological disorder. Vol. 17, Frontiers in Neuroscience. Frontiers Media SA; 2023.
  47. Hirayama M, Ohno K. Parkinson’s Disease and Gut Microbiota. Vol. 77, Annals of Nutrition and Metabolism. S. Karger AG; 2021. p. 28–35.
  48. Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, et al. The gut microbiota–brain axis in neurological disorder. Vol. 17, Frontiers in Neuroscience. Frontiers Media SA; 2023.
  49. Wang Q, Luo Y, Ray Chaudhuri K, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson’s disease: Mechanistic insights and therapeutic options. Vol. 144, Brain. Oxford University Press; 2021. p. 2571–93.
  50. Zhang F, Wang D. Potential of Akkermansia muciniphila and its outer membrane proteins as therapeutic targets for neuropsychological diseases. Vol. 14, Frontiers in Microbiology. Frontiers Media SA; 2023.
  51. Hirayama M, Ohno K. Parkinson’s Disease and Gut Microbiota. Vol. 77, Annals of Nutrition and Metabolism. S. Karger AG; 2021. p. 28–35.
  52. Hashish S, Salama M. The Role of an Altered Gut Microbiome in Parkinson’s Disease: A Narrative Review. Appl Microbiol. 2023 May 10;3(2):429–47.
  53. Singh SB, Carroll-Portillo A, Lin HC. Desulfovibrio in the Gut: The Enemy within? Vol. 11, Microorganisms. Multidisciplinary Digital Publishing Institute (MDPI); 2023.
  54. Muyzer G, Stams AJM. The ecology and biotechnology of sulphate-reducing bacteria. Vol. 6, Nature Reviews Microbiology. 2008. p. 441–54.
  55. Dordević D, Jančíková S, Vítězová M, Kushkevych I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. Vol. 27, Journal of Advanced Research. Elsevier B.V.; 2021. p. 55–69.
  56. Huynh VA, Takala TM, Murros KE, Diwedi B, Saris PEJ. Desulfovibrio bacteria enhance alpha-synuclein aggregation in a Caenorhabditis elegans model of Parkinson’s disease. Front Cell Infect Microbiol. 2023;13.
  57. Bing G, Liu M. Lipopolysaccharide animal models for parkinson’s disease. Parkinson’s Disease. 2011.
  58. Biotechnology for Food Science.
  59. Huynh VA, Takala TM, Murros KE, Diwedi B, Saris PEJ. Desulfovibrio bacteria enhance alpha-synuclein aggregation in a Caenorhabditis elegans model of Parkinson’s disease. Front Cell Infect Microbiol. 2023;13.
  60. Cannon T, Gruenheid S. Microbes and Parkinson’s disease: from associations to mechanisms. Vol. 30, Trends in Microbiology. Elsevier Ltd; 2022. p. 749–60.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””][else]Ahead of Print[/if 424] Open Access Review Article

n

n

[if 2146 equals=”Yes”][/if 2146][if 2146 not_equal=”Yes”][/if 2146]n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 1748 not_equal=””]

[else]

[/if 1748]n

n

n

Volume
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424]
Received April 20, 2024
Accepted May 22, 2024
Published May 27, 2024

n

n

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]