Effectiveness of Temporins for the Treatment of HPV Infections

Year : 2024 | Volume :02 | Issue : 01 | Page : 41-53
By
vector

Eshaana Janardhan Raichur,

  1. Research Intern, Department of Bioinfomatics, BioNome, Bnagalore, Karnataka, India

Abstract

Objectives: Human papillomavirus (HPV), especially high-risk variants like type-16 have been linked to the formation of malignant tumors. HPV-16 has been implicated in most cases of cervical cancer in women. This study aims to assess the effectiveness of three types of temporin molecules, i.e., antiviral peptides secreted by certain frog species, for the inhibition of the viral L1 protein. Methods: In the present study, various computational tools were used to find the temporin molecule that was most effective in inhibiting the attachment of the L1 viral major capsid protein of HPV type-16 to the heparan sulfate proteoglycan residues present on the basement membrane of the host cell. HPEPDOCK 2.0 and pyDockWEB servers were used to carry out protein-peptide and protein–protein docking, respectively. Binding affinity scores revealed the efficiencies of the different temporin molecules in inhibiting the action of the L1 protein. Results: According to the results obtained from this docking study, the temporin-L peptide, which was isolated from Rana temporaria was found to be the most efficient in preventing the attachment of the viral L1 major capsid protein to the host cell HSPG residues present on the basement membrane, thereby hindering the mechanism of viral entry. Conclusion: Further studies can be conducted on the mechanism of action of the temporin-L antiviral peptide. It can be a potential new therapeutic option for the treatment and management of high-risk HPV infections. Further research can be conducted on the temporin-L molecule for the formulation of new antiviral therapeutics for the treatment of HPV-16 infections. Temporins can be formulated into topical creams or gels, which could be applied directly to genital warts caused by HPV. These formulations might help reduce the size and discomfort of warts or even promote their clearance.

Keywords: Human papillomavirus, temporins, antiviral peptides, L1 protein

[This article belongs to International Journal of Cell Biology and Cellular Functions (ijcbcf)]

How to cite this article:
Eshaana Janardhan Raichur. Effectiveness of Temporins for the Treatment of HPV Infections. International Journal of Cell Biology and Cellular Functions. 2024; 02(01):41-53.
How to cite this URL:
Eshaana Janardhan Raichur. Effectiveness of Temporins for the Treatment of HPV Infections. International Journal of Cell Biology and Cellular Functions. 2024; 02(01):41-53. Available from: https://journals.stmjournals.com/ijcbcf/article=2024/view=147732

Browse Figures

References

1. Burd EM, Dean CL. Human papillomavirus. Microbiol Spectr. 2016;4:177–95. DOI: 10.1128/microbiolspec.DMIH2-0001-2015, PubMed: 27726787. 2. Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecol Oncol. 2010;118:S12–7. DOI: 10.1016/j.ygyno.2010.04.004. 3. Roden RB, Kirnbauer R, Jenson AB, Lowy DR, Schiller JT. Interaction of papillomaviruses with the cell surface. J Virol. 1994;68:7260–6. DOI: 10.1128/JVI.68.11.7260-7266.1994, PubMed: 7933109. 4. Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, et al. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem. 1999;274:5810–22. DOI: 10.1074/jbc.274.9.5810, PubMed: 10026203. 5. Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol. 2001;75:1565–70. DOI: 10.1128/JVI.75.3.1565-1570.2001, PubMed: 11152531. 6. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382:889–99. DOI: 10.1016/S0140-6736(13)60022-7, PubMed: 23618600. 7. Münger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res. 2002;89:213–28. DOI: 10.1016/s0168-1702(02)00190-9, PubMed: 12445661. 8. HPV Information Centre (2024). HPV Information Centre. Available from: https://hpvcentre.net/. 9. Conlon JM. Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides. 2008;29:1815–9. DOI: 10.1016/j.peptides.2008.05.029. 10. Conlon JM, Kolodziejek J, Nowotny N. Antimicrobial peptides from the skins of North American frogs. Biochim Biophys Acta. 2009;1788:1556–63. DOI: 10.1016/j.bbamem.2008.09.018, PubMed: 18983817. 11. Mangoni ML, Rinaldi AC, Di Giulio A, Mignogna G, Bozzi A, Barra D, et al. Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem. 2000;267:1447–54. DOI: 10.1046/j.1432-1327.2000.01143.x, PubMed: 10691983. 12. Wade D, Silberring J, Soliymani R, Heikkinen S, Kilpeläinen I, Lankinen H, et al. Antibacterial activities of temporin A analogs. FEBS Lett. 2000;479:6–9. DOI: 10.1016/s0014-5793(00)01754-3, PubMed: 10940378. 13. D’Andrea LD, Romanelli A. Temporins: Multifunctional peptides from frog skin. Int J Mol Sci. 2023;24:5426. DOI: 10.3390/ijms24065426. 14. Murgueitio MS, Bermudez M, Mortier J, Wolber G. In silico virtual screening approaches for anti-viral drug discovery. Drug Discov Today Technol. 2012;9:e219–25. DOI: 10.1016/j.ddtec.2012.07.009, PubMed: 24990575. 15. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42. DOI: 10.1093/nar/28.1.235, PubMed: 10592235, PubMed Central: PMC102472. 16. BIOVIA, Dassault Systèmes, Discovery Studio, 21.1.0 (2021). Dassault Systèmes: San Diego. 17. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. 18. National Library of Medicine. (2024). Home - Protein - NCBI. Protein. [online] National Center for Biotechnology Information. Available from: https://www.ncbi.nlm.nih.gov/protein. 19. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9. DOI: 10.1038/s41586-021-03819-2, PubMed: 34265844. 20. Remmert M, Biegert A, Hauser A, Söding J. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods. 2012;9:173–5. DOI: 10.1038/nmeth.1818. 21. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988;85:2444–8. DOI: 10.1073/pnas.85.8.2444, PubMed: 3162770. 22. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. DOI: 10.1038/msb.2011.75, PubMed: 21988835. 23. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291-325. DOI: 10.1146/annurev.biophys.29.1.291, PubMed: 10940251. 24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-42. DOI: 10.1093/nar/28.1.235. 25. The PyMOL molecular graphics. System, Version 1.2r. Schrödinger, LLC: Portland, USA, 3pre. 26. Jiménez-García B, Pons C, Fernández-Recio J. pyDockWEB: A web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics. 2013;29(13):1698-9. DOI: 10.1093/bioinformatics/btt262, PubMed: 23661696. 27. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):127-34. DOI: 10.1093/protein/8.2.127, PubMed: 7630882. 28. Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell. 2000;5(3):557-67. DOI: 10.1016/s1097-2765(00)80449-9, PubMed: 10882140. 29. Ramakrishnan S, Partricia S, Mathan G. Overview of high-risk HPV’s 16 and 18 infected cervical cancer: Pathogenesis to prevention. Biomed Pharmacother. 2015;70:103-10. DOI: 10.1016/j.biopha.2014.12.041, PubMed: 25776487. 30. Iljazović E, Mena M, Tous S, Alemany L, Omeragić F, Sadiković A, et al. Human papillomavirus genotype distribution in invasive cervical cancer in Bosnia and Herzegovina. Cancer Epidemiol. 2014;38(5):504-10. DOI: 10.1016/j.canep.2014.06.004, PubMed: 25130915. 31. Muñoz N, Franceschi S, Bosetti C, Moreno V, Herrero R, Smith JS, et al. Role of parity and human papillomavirus in cervical cancer: The IARC multicentric case-control study. Lancet. 2002;359(9312):1093-101. DOI: 10.1016/S0140-6736(02)08151-5, PubMed: 11943256. 32. Schiller JT, Lowy DR. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat Rev Microbiol. 2012;10(10):681-92. DOI: 10.1038/nrmicro2872, PubMed: 22961341. 33. Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol. 2001;75(3):1565-70. DOI: 10.1128/JVI.75.3.1565-70.2001, PubMed: 11152531. 34. Johnson KM, Kines RC, Roberts JN, Lowy DR, Schiller JT, Day PM. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol. 2009;83(5):2067-74. DOI: 10.1128/JVI.02190-08, PubMed: 19073722. 35. Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, et al. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem. 1999;274(9):5810-22. DOI: 10.1074/jbc.274.9.5810, PubMed: 10026203. 36. Mangoni ML. Temporins, anti-infective peptides with expanding properties. Cell Mol Life Sci. 2006;63(9):1060-9. DOI: 10.1007/s00018-005-5536-y. 37. Giacometti A, Cirioni O, Kamysz W, Silvestri C, Licci A, Riva A, et al. In vitro activity of amphibian peptides alone and in combination with antimicrobial agents against multidrug-resistant pathogens isolated from surgical wound infection. Peptides. 2005;26(11):2111-6. DOI: 10.1016/j.peptides.2005.03.009, PubMed: 16269345. 38. Giacometti A, Cirioni O, Ghiselli R, Orlando F, D’Amato G, Kamysz W, et al. Temporin A soaking in combination with intraperitoneal linezolid prevents vascular graft infection in a subcutaneous rat pouch model of infection with Staphylococcus epidermidis with intermediate resistance to glycopeptides. Antimicrob Agents Chemother. 2004;48(8):3162-4. DOI: 10.1128/AAC.48.8.3162-64.2004. 39. Marcocci ME, Amatore D, Villa S, Casciaro B, Aimola P, Franci G, et al. The amphibian antimicrobial peptide Temporin B inhibits in vitro herpes simplex virus 1 infection. Antimicrob Agents Chemother. 2018;62(5). DOI: 10.1128/AAC.02367-17, PubMed: 29483113. 40. Carotenuto A, Malfi S, Saviello MR, Campiglia P, Gomez-Monterrey I, Mangoni ML, et al. A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L. J Med Chem. 2008;51(8):2354-62. DOI: 10.1021/jm701604t, PubMed: 18370376. 41. Rinaldi AC, Mangoni ML, Rufo A, Luzi C, Barra D, Zhao H, et al. Temporin L: Antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem J. 2002;368(Pt 1):91-100. DOI: 10.1042/BJ20020806, PubMed: 12133008. 42. Data Bank RP. RCSB PDB – EPE ligand summary page. RCSB PDB – EPE Ligand Summary Page. https://www.rcsb.org/ligand/EPE. 43. Harper DM. Currently approved prophylactic HPV vaccines. Expert Rev Vaccines. 2009;8(12):1663-79. DOI: 10.1586/erv.09.123, PubMed: 19943762. 44. Kash N, Lee MA, Kollipara R, Downing C, Guidry J, Tyring SK. Safety and efficacy data on vaccines and immunization to human papillomavirus. J Clin Med. 2015;4(4):614-33. DOI: 10.3390/jcm4040614. 45. Harper DM, Williams KB. Prophylactic HPV vaccines: Current knowledge of impact on gynecologic premalignancies. Discov Med. 2010;10(50):7-17. 46. Ma B, Maraj B, Tran NP, Knoff J, Chen A, Alvarez RD, et al. Emerging human papillomavirus vaccines. Expert Opin Emerg Drugs. 2012;17(4):469-92. DOI: 10.1517/14728214.2012.744393, PubMed: 23163511.


Regular Issue Subscription Original Research
Volume 02
Issue 01
Received 18/04/2024
Accepted 13/05/2024
Published 24/05/2024