Tinospora Sinensis Compounds for Zika Virus Targets 5JRZ and 5KVD In Silico Screening: A Potential Approach to Preventing Guillain-Barre Syndrome

Year : 2023 | Volume : 01 | Issue : 02 | Page : 1-15
By

    Pradyum Prasad

  1. Samiksha Bhor

  1. Student, University Institute of Biotechnology, Chandigarh University, Punjab, India
  2. Bioinformatics Associate, Department of Biotechnology, BioNome, Bengaluru,, Karnataka, India

Abstract

Objective:
GBS is a very rare kind of disease but at the same time, it is very dangerous too. The study estimates that people who are suffering from zika virus infection are more prone to GBS. According to surveys, 1 out of 4000 people got affected by this disease, and the scariest part of this disease is that there is no cure available. In this computational era drug discovery is also done by computational methods nowadays, we choose 5JRZ and 5KVD as our target proteins to perform the molecular docking.
Methods:
The study was based on a computational approach using several types of phytocompounds for the estimation of their potential against the selected target proteins 5JRZ and 5KVD. In the process of molecular docking, different types of software and online tools will be needed to perform different types of tasks. The online tools and software are IMPPAT, PubChem, PDB, OpenBable, BIOVIA Discovery Studio, PDBsum, PyRx and Swissadme.
Result:
The molecular docking result revealed that the selected ligands have the best binding affinity with both the target proteins.
Conclusion:
The ligands could potentially be used to suppress the triggers of the GBS that will eventually treat the GBS, these findings will help researchers to find novel drugs against the GBS and Zika virus infection.

Keywords: GBS, 5JRZ, 5KVD, Tinospora sinensis, molecular docking

[This article belongs to International Journal of Cell Biology and Cellular Functions(ijcbcf)]

How to cite this article: Pradyum Prasad, Samiksha Bhor Tinospora Sinensis Compounds for Zika Virus Targets 5JRZ and 5KVD In Silico Screening: A Potential Approach to Preventing Guillain-Barre Syndrome ijcbcf 2023; 01:1-15
How to cite this URL: Pradyum Prasad, Samiksha Bhor Tinospora Sinensis Compounds for Zika Virus Targets 5JRZ and 5KVD In Silico Screening: A Potential Approach to Preventing Guillain-Barre Syndrome ijcbcf 2023 {cited 2023 Jun 30};01:1-15. Available from: https://journals.stmjournals.com/ijcbcf/article=2023/view=128900

Browse Figures

References

  1. Willison, H. J., Jacobs, B. C., & van Doorn, P. A. (2016). Guillain-barre syndrome. The Lancet, 388(10045), 717-727.
  2. Hughes, R. A., & Cornblath, D. R. (2005). Guillain-barre syndrome. The Lancet, 366(9497), 1653-1666.
  3. Shahrizaila, N., Lehmann, H. C., & Kuwabara, S. (2021). Guillain-Barré syndrome. The lancet, 397(10280), 1214-1228.
  4. Laman, J. D., Huizinga, R., Boons, G. J., & Jacobs, B. C. (2022). Guillain-Barré syndrome: expanding the concept of molecular mimicry. Trends in immunology.
  5. Das, M. P. Molecular Docking Studies of Compounds from Euphorbia Hirta and Bacopa Monnieri To ZIKA Virus Structural and Non Structural Proteins.
  6. Meewan, I., Shiryaev, S., Huang, C. T., Lin, Y. W., Chuang, C. H., Terskikh, A., & Abagyan, R. (2022). Allosteric inhibitors of Zika virus NS2B-NS3 protease targeting protease in super-open conformation. bioRxiv, 2022-03.
  7. Jalal, K., Khan, K., Hayat, A., Ahmad, D., Alotaibi, G., Uddin, R., … & Basharat, Z. (2022). Mining therapeutic targets from the antibiotic-resistant Campylobacter coli and virtual screening of natural product inhibitors against its riboflavin synthase. Molecular Diversity, 1-18.
  8. Kumar, A., Kumar, D., Kumar, P., Jones, B. L., Mysorekar, I. U., & Giri, R. (2022). Discovery And Characterization of Small Molecule Inhibitors of Zika Virus Replication. bioRxiv, 2022-12.
  9. Fong, Y. D., & Chu, J. J. H. (2022). Natural products as Zika antivirals. Medicinal Research Reviews, 42(5), 1739-1780.
  10. Ullah, S., Zheng, Z., Li, Y., Rahman, W., Ullah, F., Ullah, A., … & Gao, T. Inhibition of Zika Virus NS2B-NS3 Viral Protease by Tripeptide Inhibitor Using Molecular Docking and Molecular Dynamics Simulations. Available at SSRN 4188641.
  11. Cruz-Arreola, O., Orduña-Diaz, A., Domínguez, F., Reyes-Leyva, J., Vallejo-Ruiz, V., Domínguez-Ramírez, L., & Santos-López, G. (2022). In silico testing of flavonoids as potential inhibitors of protease and helicase domains of dengue and Zika viruses. PeerJ, 10, e13650.
  12. Qian, W., Zhou, G. F., Ge, X., Xue, J. X., Zheng, C. B., Yang, L. M., … & Zhou, G. C. (2022). Discovery of dehydroandrographolide derivatives with C19 hindered ether as potent anti-ZIKV agents with inhibitory activities to MTase of ZIKV NS5. European Journal of Medicinal Chemistry, 243, 114710.
  13. Trivedi, N., Mishra, A., & Kumar, D. (2022). Herbal medicine is the way of potential therapeutic option for the treatment of COVID-19: Recent updates. Journal of Complementary Medicine Research, 13(1), 27-27.
  14. Sharma, D., Sharma, N., Manchanda, N., Prasad, S. K., Sharma, P. C., Thakur, V. K., … & Dhobi, M. (2022). Bioactivity and In Silico Studies of Isoquinoline and Related Alkaloids as Promising Antiviral Agents: An Insight. Biomolecules, 13(1), 17.
  15. Mohsin, A., & Bhandari, K. (2022, March). Molecular docking studies to find a natural inhibitor against dengue. In AIP Conference Proceedings (Vol. 2424, No. 1, p. 060006). AIP Publishing LLC.
  16. Sarkar, D., Goswami, R., Sarkar, A., & Mukherjee, S. (2022). ROLE OF TINOSPORA CORDIFOLIA (GILOY) IN BONE MAINTENANCE DISORDER (OSTEOPOROSIS) BY DOCKING ANALYTICAL STUDY. EPRA International Journal of Research and Development (IJRD), 7(4), 1-8.
  17. Taslem Mourosi, J., Awe, A., Jain, S., & Batra, H. (2022). Nucleic Acid Vaccine Platform for DENGUE and ZIKA Flaviviruses. Vaccines, 10(6), 834.
  18. Molla, M. H. R., Aljahdali, M. O., Sumon, M. A. A., Asseri, A. H., Altayb, H. N., Islam, M., … & Mohammad, F. (2023). Integrative Ligand-Based Pharmacophore Modeling, Virtual Screening, and Molecular Docking Simulation Approaches Identified Potential Lead Compounds against Pancreatic Cancer by Targeting FAK1. Pharmaceuticals, 16(1), 120.
  19. Azzam, K. A. (2023). SwissADME and pkCSM Webservers Predictors: an integrated Online Platform for Accurate and Comprehensive Predictions for In Silico ADME/T Properties of Artemisinin and its Derivatives. Kompleksnoe Ispolzovanie Mineralnogo Syra, 325(2), 14-21.
  20. Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., & Steffenel, L. A. (2022). Machine-learning methods for ligand–protein molecular docking. Drug discovery today, 27(1), 151-164.
  21. van Doorn, P. A. (2013). Diagnosis, treatment and prognosis of Guillain-Barré syndrome (GBS). La Presse Médicale, 42(6), e193-e201.
  22. Marcus, R. (2023). What Is Guillain-Barré Syndrome?. JAMA, 329(7), 602-602.
  23. Davies, A. J., Lleixà, C., Siles, A. M., Gourlay, D. S., Berridge, G., Dejnirattisai, W., … & Rinaldi, S. (2023). Guillain-Barré syndrome following Zika virus infection is associated with a diverse spectrum of peripheral nerve reactive antibodies. Neurology-Neuroimmunology Neuroinflammation, 10(1).
  24. Lazarini, F., Lannuzel, A., Cabié, A., Michel, V., Madec, Y., Chaumont, H., … & Ungeheuer, M. N. (2022). Olfactory outcomes in Zika virus‐associated Guillain–Barré syndrome. European Journal of Neurology, 29(9), 2823-2831.
  25. Lunn, M. P. (2022). Guillain-Barré syndrome in an era of global infections and 21st century vaccination. Current Opinion in Neurology, 35(5), 571-578.
  26. Basarab, M., Bowman, C., Aarons, E. J., & Cropley, I. (2016). Zika virus. Bmj, 352.
  27. Chen, H. L., & Tang, R. B. (2016). Why Zika virus infection has become a public health concern?. Journal of the Chinese Medical Association, 79(4), 174-178.
  28. Sarangi, M. K., & Soni, S. (2013). A review on giloy: the magic herb. Inventi Rapid: Planta Activa, 2, 1-4.
  29. Shree, P., Mishra, P., Selvaraj, C., Singh, S. K., Chaube, R., Garg, N., & Tripathi, Y. B. (2022). Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants–Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)–a molecular docking study. Journal of Biomolecular Structure and Dynamics, 40(1), 190-203.
  30. Priya, S., Kumar, N. S., & Hemalatha, S. (2018). Antiviral phytocompounds target envelop protein to control Zika virus. Computational Biology and Chemistry, 77, 402-412.
  31. Kang, C., Keller, T. H., & Luo, D. (2017). Zika virus protease: an antiviral drug target. Trends in microbiology, 25(10), 797-808.
  32. Gratton, R., Agrelli, A., Tricarico, P. M., Brandão, L., & Crovella, S. (2019). Autophagy in Zika virus infection: a possible therapeutic target to counteract viral replication. International journal of molecular sciences, 20(5), 1048.
  33. Panayiotou, C., Lindqvist, R., Kurhade, C., Vonderstein, K., Pasto, J., Edlund, K., … & Överby, A. K. (2018). Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation. Journal of virology, 92(7), e02054-17.
  34. Wakerley, B. R., & Yuki, N. (2013). Infectious and noninfectious triggers in Guillain–Barré syndrome. Expert review of clinical immunology, 9(7), 627-639.
  35. Van Doorn, P. A., Ruts, L., & Jacobs, B. C. (2008). Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. The Lancet Neurology, 7(10), 939-950.
  36. Musso, D., Ko, A. I., & Baud, D. (2019). Zika Virus Infection — After the Pandemic. New England Journal of Medicine, 381(15), 1444–1457. https://doi.org/10.1056/NEJMRA1808246
  37. Guillain-Barré Syndrome | National Institute of Neurological Disorders and Stroke. (n.d.). Retrieved March 31, 2023, from https://www.ninds.nih.gov/health-information/disorders/guillain-barre-syndrome

Regular Issue Subscription Original Research
Volume 01
Issue 02
Received May 8, 2023
Accepted June 2, 2023
Published June 30, 2023