Anti Covid-19 Drugs Suggested by Computational Methods: A Review

Year : 2023 | Volume :01 | Issue : 01 | Page : 16-34
By

    B. Reshika

  1. Samiksha Shivaji Bhor

  1. Student, Department of Life Sciences, CHRIST University, Karnataka, India
  2. Bioinformatics Associate, Department of Biotechnology, BioNome, Karnataka, India

Abstract

Background and aims: Long COVID refers to the persistence of illness in individuals who have survived from COVID-19 infection. This article reviews long covid and the use of in silico techniques in drug development for COVID-19. Results: Many COVID-19 survivors have long COVID, which has become a burden in daily life. Various attempts have been undertaken to relieve symptoms and manage it, but there is no cure as of yet. Healthy lifestyle practices and periodic health assessment could be of some help. Many plant phytochemicals, synthetic medicines, and other compounds show tremendous potential in computational analysis and should be studied further in the laboratory employing in vivo and in vitro approaches to understand their biochemistry in the human body. Conclusions: This review will assist investigators in analyzing long COVID and further exploring the given compounds in order to find a cure for COVID-19.

Keywords: SARS-CoV-2; Long COVID; Molecular docking; Pandemic; Drug discovery.

[This article belongs to International Journal of Cell Biology and Cellular Functions(ijcbcf)]

How to cite this article: B. Reshika, Samiksha Shivaji Bhor , Anti Covid-19 Drugs Suggested by Computational Methods: A Review ijcbcf 2023; 01:16-34
How to cite this URL: B. Reshika, Samiksha Shivaji Bhor , Anti Covid-19 Drugs Suggested by Computational Methods: A Review ijcbcf 2023 {cited 2023 Jun 01};01:16-34. Available from: https://journals.stmjournals.com/ijcbcf/article=2023/view=110310


Browse Figures

References

  1. WHO Coronavirus (COVID-19) Dashboard. (n.d.). Retrieved February 23, 2023, from https://covid19.who.int
  2. Crook, H., Raza, S., Nowell, J., Young, M., & Edison, P. (2021). Long covid—Mechanisms, risk factors, and management. BMJ, n1648. https://doi.org/10.1136/bmj.n1648
  3. Raveendran, A. V., Jayadevan, R., & Sashidharan, S. (2021). Long COVID: An overview. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(3), 869–875. https://doi.org/10.1016/j.dsx.2021.04.007
  4. Callard, F., & Perego, E. (2021). How and why patients made Long Covid. Social Science & Medicine, 268, 113426. https://doi.org/10.1016/j.socscimed.2020.113426
  5. Yong, S. J. (2021). Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infectious Diseases, 53(10), 737–754. https://doi.org/10.1080/23744235.2021.1924397
  6. Notarte, K. I., Catahay, J. A., Velasco, J. V., Pastrana, A., et al. (2022). Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review. EClinicalMedicine, 53, 101624. https://doi.org/10.1016/j.eclinm.2022.101624
  7. Colafrancesco, S., Alessandri, C., Conti, F., & Priori, R. (2020). COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmunity Reviews, 19(7), 102573. https://doi.org/10.1016/j.autrev.2020.102573
  8. Positive RT-PCR Test Results in Patients Recovered From COVID-19 | Infectious Diseases | JAMA | JAMA Network. (n.d.). Retrieved February 23, 2023, from https://jamanetwork.com/journals/jama/fullarticle/2762452
  9. Ranganathan, P., Sengar, M., Chinnaswamy, G., Agrawal, G., Arumugham, R., et al. (2021). Impact of COVID-19 on cancer care in India: A cohort study. The Lancet Oncology, 22(7), 970–976. https://doi.org/10.1016/S1470-2045(21)00240-0
  10. Aiyegbusi, O. L., Hughes, S. E., Turner, G., Rivera, S. C., McMullan, C., et al. (2021). Symptoms, complications and management of long COVID: A review. Journal of the Royal Society of Medicine, 114(9), 428–442. https://doi.org/10.1177/01410768211032850
  11. Yadav, M., Dhagat, S., & Eswari, J. S. (2020). Emerging strategies on in silico drug development against COVID-19: Challenges and opportunities. European Journal of Pharmaceutical Sciences, 155, 105522. https://doi.org/10.1016/j.ejps.2020.105522
  12. Altay, O., Mohammadi, E., Lam, S., Turkez, H., Boren, J., et al. (2020). Current Status of COVID-19 Therapies and Drug Repositioning Applications. IScience, 23(7), 101303. https://doi.org/10.1016/j.isci.2020.101303
  13. Gupta, Y., Savytskyi, O. V., Coban, M., Venugopal, A., Pleqi, V., et al. (2023). Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Molecular Aspects of Medicine, 91, 101151. https://doi.org/10.1016/j.mam.2022.101151
  14. Murillo, J., Villegas, L. M., Ulloa-Murillo, L. M., & Rodríguez, A. R. (2021). Recent trends on omics and bioinformatics approaches to study SARS-CoV-2: A bibliometric analysis and mini-review. Computers in Biology and Medicine, 128, 104162. https://doi.org/10.1016/j.compbiomed.2020.104162
  15. Singh, M. B., Sharma, R., Kumar, D., Khanna, P., Mansi, Khanna, L., et al. (2022). An understanding of coronavirus and exploring the molecular dynamics simulations to find promising candidates against the Mpro of nCoV to combat the COVID-19: A systematic review. Journal of Infection and Public Health, 15(11), 1326–1349. https://doi.org/10.1016/j.jiph.2022.10.013
  16. Amparo, T. R., Seibert, J. B., Silveira, B. M., Costa, F. S. F., Almeida, T. C., et al. (2021). Brazilian essential oils as source for the discovery of new anti-COVID-19 drug: A review guided by in silico study. Phytochemistry Reviews, 20(5), 1013–1032. https://doi.org/10.1007/s11101-021-09754-4
  17. Choe, J., Har Yong, P., & Xiang Ng, Z. (2022). The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS‐CoV‐2 and Cytokine Storm. Chemistry & Biodiversity, 19(11). https://doi.org/10.1002/cbdv.202200655
  18. Nguyen, Q. V., Chong, L. C., Hor, Y.-Y., Lew, L.-C., Rather, I. A., & Choi, S.-B. (2022). Role of Probiotics in the Management of COVID-19: A Computational Perspective. Nutrients, 14(2), 274. https://doi.org/10.3390/nu14020274
  19. Mohs, R. C., & Greig, N. H. (2017). Drug discovery and development: Role of basic biological research. Alzheimer’s & Dementia : Translational Research & Clinical Interventions, 3(4), 651–657. https://doi.org/10.1016/j.trci.2017.10.005
  20. Clark, D. E. (2006). What has computer-aided molecular design ever done for drug discovery? Expert Opinion on Drug Discovery, 1(2), 103–110. https://doi.org/10.1517/17460441.1.2.103
  21. Kumar, V., Chandra, S., & Siddiqi, M. I. (2014). Recent advances in the development of antiviral agents using computer-aided structure based approaches. Current Pharmaceutical Design, 20(21), 3488–3499. https://doi.org/10.2174/13816128113199990636
  22. Selvaraj, G. F., Piramanayagam, S., Devadasan, V., Hassan, S., Krishnasamy, K., & Srinivasan, S. (2020). Computational analysis of drug like candidates against Neuraminidase of Human Influenza A virus subtypes. Informatics in Medicine Unlocked, 18, 100284. https://doi.org/10.1016/j.imu.2019.100284
  23. Mallipeddi, P., Kumar, G., W. White, S., & R. Webb, T. (2014). Recent Advances in Computer-Aided Drug Design as Applied to Anti-Influenza Drug Discovery [Text]. Bentham Science Publishers.https://www.ingentaconnect.com/content/ben/ctmc/2014/00000014/00000016/art00
    004
  24. Tahir ul Qamar, M., Maryam, A., Muneer, I., Xing, F., Ashfaq, U. A., et al. (2019). Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus. Scientific Reports, 9, 1433. https://doi.org/10.1038/s41598-018-38450-1
  25. Jha, N., Prashar, D., Rashid, M., Shafiq, M., Khan, R., et al. (2021). Deep Learning Approach for Discovery of In Silico Drugs for Combating COVID-19. Journal of Healthcare Engineering, 2021, e6668985. https://doi.org/10.1155/2021/6668985
  26. Ozdemir, E. S., Ranganathan, S. V., & Nussinov, R. (2022). How has artificial intelligence impacted COVID-19 drug repurposing and what lessons have we learned? Expert Opinion on Drug Discovery, 17(10), 1061–1065. https://doi.org/10.1080/17460441.2022.2128333
  27. Maghsoudi, S., Taghavi Shahraki, B., Rameh, F., Nazarabi, M., Fatahi, Y., et al. (2022). A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery. Chemical Biology & Drug Design, 100(5), 699–721. https://doi.org/10.1111/cbdd.14136
  28. Palit, P., Mukhopadhyay, A., & Chattopadhyay, D. (2021). Phyto‐pharmacological perspective of Silymarin: A potential prophylactic or therapeutic agent for COVID ‐19, based on its promising immunomodulatory, anti‐coagulant and anti‐viral property. Phytotherapy Research, 35(8), 4246–4257. https://doi.org/10.1002/ptr.7084
  29. Shaik, F. B., Swarnalatha, K., Mohan, M. C., Thomas, A., Chikati, R., et al. (2022). Novel antiviral effects of chloroquine, hydroxychloroquine, and green tea catechins against SARS CoV-2 main protease (Mpro) and 3C-like protease for COVID-19 treatment. Clinical Nutrition Open Science, 42, 62–72. https://doi.org/10.1016/j.nutos.2021.12.004
  30. Mhatre, S., Srivastava, T., Naik, S., & Patravale, V. (2021). Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 85, 153286. https://doi.org/10.1016/j.phymed.2020.153286
  31. Hosseini, M., Chen, W., Xiao, D., & Wang, C. (2021). Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Precision Clinical Medicine, 4(1), 1–16. https://doi.org/10.1093/pcmedi/pbab001
  32. Yosri, N., Abd El-Wahed, A. A., Ghonaim, R., Khattab, O. M., Sabry, A., et al. (2021). Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods, 10(8), 1776. https://doi.org/10.3390/foods10081776
  33. Festa, M., Sansone, C., Brunet, C., Crocetta, F., Di Paola, L., et al. (2020). Cardiovascular Active Peptides of Marine Origin with ACE Inhibitory Activities: Potential Role as Anti-Hypertensive Drugs and in Prevention of SARS-CoV-2 Infection. International Journal of Molecular Sciences, 21(21), 8364. https://doi.org/10.3390/ijms21218364
  34. Youssef, F. S., Alshammari, E., & Ashour, M. L. (2021). Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling. International Journal of Molecular Sciences, 22(4), 1866. https://doi.org/10.3390/ijms22041866
  35. Verkhivker, G. (2022). Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering. International Journal of Molecular Sciences, 23(6), 2928. https://doi.org/10.3390/ijms23062928
  36. Mohamed, K., Yazdanpanah, N., Saghazadeh, A., & Rezaei, N. (2021). Computational drug discovery and repurposing for the treatment of COVID-19: A systematic review. Bioorganic Chemistry, 106, 104490. https://doi.org/10.1016/j.bioorg.2020.104490
  37. Unni, S., Aouti, S., Thiyagarajan, S., & Padmanabhan, B. (2020). Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods. Journal of Biosciences, 45(1), 130. https://doi.org/10.1007/s12038-020-00102-w
  38. Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., et al. (2020). Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Frontiers in Immunology, 11, 827. https://doi.org/10.3389/fimmu.2020.00827
  39. Ohe, M., Shida, H., Jodo, S., Kusunoki, Y., Seki, M., et al. (2020). Macrolide treatment for COVID-19: Will this be the way forward? BioScience Trends, 14(2), 159–160. https://doi.org/10.5582/bst.2020.03058
  40. Million, M., Lagier, J.-C., Gautret, P., Colson, P., Fournier, P.-E., et al. (2020). Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel Medicine and Infectious Disease, 35, 101738. https://doi.org/10.1016/j.tmaid.2020.101738
  41. Coronavirus outbreak: ICMR recommends use of hydroxy-chloroquine for critical COVID-19 cases—BusinessToday. (n.d.). Retrieved February 25, 2023, from https://www.businesstoday.in/latest/economy-politics/story/coronavirus-outbreak-icmr-recommends-use-hydroxy-chloroquine-critical-covid-19-cases-252762-2020-03-23
  42. Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  43. Gautret, P., Lagier, J.-C., Parola, P., Hoang, V. T., Meddeb, L., et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1), 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
  44. Devaux, C. A., Rolain, J.-M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? International Journal of Antimicrobial Agents, 55(5), 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
  45. Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends, 14(1), 72–73. https://doi.org/10.5582/bst.2020.01047
  46. Ohishi, T., Goto, S., Monira, P., Isemura, M., & Nakamura, Y. (2016). Anti-inflammatory Action of Green Tea. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 15(2), 74–90. https://doi.org/10.2174/1871523015666160915154443
  47. Kaihatsu, K., Yamabe, M., & Ebara, Y. (2018). Antiviral Mechanism of Action of Epigallocatechin-3-O-gallate and Its Fatty Acid Esters. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 23(10), 2475. https://doi.org/10.3390/molecules23102475
  48. Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1779818
  49. Jang, M., Park, R., Park, Y.-I., Cha, Y.-E., Yamamoto, A., et al. (2021). EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochemical and Biophysical Research Communications, 547, 23–28. https://doi.org/10.1016/j.bbrc.2021.02.016
  50. Menegazzi, M., Campagnari, R., Bertoldi, M., Crupi, R., Di Paola, R., & Cuzzocrea, S. (2020). Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? International Journal of Molecular Sciences, 21(14), 5171. https://doi.org/10.3390/ijms21145171
  51. Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., et al. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  52. Nguyen, T. T. H., Woo, H.-J., Kang, H.-K., Nguyen, V. D., Kim, Y.-M., et al. (2012). Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnology Letters, 34(5), 831–838. https://doi.org/10.1007/s10529-011-0845-8
  53. Chen, Y., Gu, S., Chen, Y., Lu, H., Shi, D., et al. (2022). Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut, 71(1), 222–225. https://doi.org/10.1136/gutjnl-2021-324090
  54. Xu, K., Cai, H., Shen, Y., Ni, Q., Chen, Y., et al. (2020). [Management of COVID-19: The Zhejiang experience]. Zhejiang Da Xue Xue Bao. Yi Xue Ban = Journal of Zhejiang University. Medical Sciences, 49(2), 147–157. https://doi.org/10.3785/j.issn.1008-9292.2020.02.02
  55. Yahfoufi, N., Mallet, J., Graham, E., & Matar, C. (2018). Role of probiotics and prebiotics in immunomodulation. Current Opinion in Food Science, 20, 82–91. https://doi.org/10.1016/j.cofs.2018.04.006
  56. Plaza-Díaz, J., Ruiz-Ojeda, F. J., Vilchez-Padial, L. M., & Gil, A. (2017). Evidence of the Anti-Inflammatory Effects of Probiotics and Synbiotics in Intestinal Chronic Diseases. Nutrients, 9(6), 555. https://doi.org/10.3390/nu9060555
  57. Wang, Y., Wu, Y., Wang, Y., Xu, H., Mei, X., et al. (2017). Antioxidant Properties of Probiotic Bacteria. Nutrients, 9(5), 521. https://doi.org/10.3390/nu9050521
  58. Grant, P. T., & Mackie, A. M. (1977). Drugs from the sea—Fact or fantasy? Nature, 267(5614), 786–788. https://doi.org/10.1038/267786a0
  59. Lindequist, U. (2016). Marine-Derived Pharmaceuticals – Challenges and Opportunities. Biomolecules & Therapeutics, 24(6), 561–571. https://doi.org/10.4062/biomolther.2016.181
  60. Malve, H. (2016). Exploring the ocean for new drug developments: Marine pharmacology. Journal of Pharmacy & Bioallied Sciences, 8(2), 83–91. https://doi.org/10.4103/0975-7406.171700
  61. Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52, 39. https://doi.org/10.1186/s40659-019-0246-3
  62. El-Kashef, D. H., Youssef, F. S., Hartmann, R., Knedel, T.-O., Janiak, C., et al. (2020). Azaphilones from the Red Sea Fungus Aspergillus falconensis. Marine Drugs, 18(4), 204. https://doi.org/10.3390/md18040204
  63. Youssef, F. S., Ashour, M. L., Singab, A. N. B., & Wink, M. (2019). A Comprehensive Review of Bioactive Peptides from Marine Fungi and Their Biological Significance. Marine Drugs, 17(10), 559. https://doi.org/10.3390/md17100559
  64. Zhang, X., Li, Z., & Gao, J. (2018). Chemistry and Biology of Secondary Metabolites from Aspergillus Genus. The Natural Products Journal, 8(4), 275–304. https://doi.org/10.2174/2210315508666180501154759
  65. Barnes, C. O., Jette, C. A., Abernathy, M. E., Dam, K.-M. A., Esswein, S. R., et al. (2020). SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature, 588(7839), 682. https://doi.org/10.1038/s41586-020-2852-1
  66. Barnes, C. O., Anthony P. West, J., Huey-Tubman, K. E., Hoffmann, M. A. G., Sharaf, N. G., et al. (2020). Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell, 182(4), 828. https://doi.org/10.1016/j.cell.2020.06.025
  67. Finkelstein, M. T., Mermelstein, A. G., Parker Miller, E., Seth, P. C., Stancofski, E.-S. D., & Fera, D. (2021). Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses, 13(1), 134. https://doi.org/10.3390/v13010134
  68. Gavor, E., Choong, Y. K., Er, S. Y., Sivaraman, H., & Sivaraman, J. (2020). Structural Basis of SARS-CoV-2 and SARS-CoV Antibody Interactions. Trends in Immunology, 41(11), 1006–1022. https://doi.org/10.1016/j.it.2020.09.004
  69. Wu, Y., Wang, F., Shen, C., Peng, W., Li, D., et al. (2020). A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science (New York, N.y.), 368(6496), 1274. https://doi.org/10.1126/science.abc2241
  70. Du, S., Cao, Y., Zhu, Q., Yu, P., Qi, F., et al. (2020). Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell, 183(4), 1013. https://doi.org/10.1016/j.cell.2020.09.035
  71. Baum, A., Fulton, B. O., Wloga, E., Copin, R., Pascal, K. E., et al. (2020). Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science (New York, N.y.). https://doi.org/10.1126/science.abd0831
  72. Ku, Z., Xie, X., Davidson, E., Ye, X., Su, H., et al. (2021). Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nature Communications, 12. https://doi.org/10.1038/s41467-020-20789-7
  73. Chi, X., Yan, R., Zhang, J., Zhang, G., Zhang, Y., et al. (2020). A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science (New York, N.y.), 369(6504), 650. https://doi.org/10.1126/science.abc6952
  74. Brouwer, P. J. M., Caniels, T. G., Straten, K. van der, Snitselaar, J. L., Aldon, Y., Bangaru, S., et al. (2020). Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science (New York, N.y.), 369(6504), 643. https://doi.org/10.1126/science.abc5902
  75. Lv, Z., Deng, Y.-Q., Ye, Q., Cao, L., Sun, C.-Y., et al. (2020). Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science (New York, N.y.). https://doi.org/10.1126/science.abc5881
  76. Tortorici, M. A., Beltramello, M., Lempp, F. A., Pinto, D., Dang, H. V., et al. (2020). Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science (New York, N.y.), 370(6519), 950. https://doi.org/10.1126/science.abe3354
  77. Gaebler, C., Wang, Z., Lorenzi, J. C. C., Muecksch, F., Finkin, S., et al. (2021). Evolution of antibody immunity to SARS-CoV-2. Nature, 591(7851), 639. https://doi.org/10.1038/s41586-021-03207-w
  78. Hurlburt, N. K., Seydoux, E., Wan, Y.-H., Edara, V. V., Stuart, A. B., et al. (2020). Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. Nature Communications, 11. https://doi.org/10.1038/s41467-020-19231-9
  79. Asarnow, D., Wang, B., Lee, W.-H., Hu, Y., Huang, C.-W., et al. (2021). Structural insight into SARS-CoV-2 neutralizing antibodies and modulation of syncytia. Cell, 184(12), 3192. https://doi.org/10.1016/j.cell.2021.04.033
  80. Starr, T. N., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K. H. D., et al. (2020). Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell, 182(5), 1295. https://doi.org/10.1016/j.cell.2020.08.012
  81. Starr, T. N., Greaney, A. J., Addetia, A., Hannon, W. W., Choudhary, M. C., et al. (2021). Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science (New York, N.y.), 371(6531), 850. https://doi.org/10.1126/science.abf9302
  82. Starr, T. N., Czudnochowski, N., Liu, Z., Zatta, F., Park, Y.-J., et al. (2021). SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 597(7874), 97. https://doi.org/10.1038/s41586-021-03807-6
  83. Greaney, A. J., Starr, T. N., Gilchuk, P., Zost, S. J., Binshtein, E., et al. (2021). Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host & Microbe, 29(1), 44. https://doi.org/10.1016/j.chom.2020.11.007
  84. Greaney, A. J., Loes, A. N., Crawford, K. H. D., Starr, T. N., Malone, K. D., et al. D. (2021). Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host & Microbe, 29(3), 463. https://doi.org/10.1016/j.chom.2021.02.003
  85. Greaney, A. J., Starr, T. N., Barnes, C. O., Weisblum, Y., Schmidt, F., et al. (2021). Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nature Communications, 12. https://doi.org/10.1038/s41467-021-24435-8
  86. Chen, F., Liu, Z., & Jiang, F. (2021). Prospects of Neutralizing Nanobodies Against SARS-CoV-2. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.690742
  87. Niu, L., Wittrock, K. N., Clabaugh, G. C., Srivastava, V., & Cho, M. W. (2021). A Structural Landscape of Neutralizing Antibodies Against SARS-CoV-2 Receptor Binding Domain. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.647934
  88. Aria, H., Mahmoodi, F., Ghaheh, H. S., Mavandadnejad, F., Zare, H., et al. (2022). Outlook of therapeutic and diagnostic competency of nanobodies against SARS-CoV-2: A systematic review. Analytical Biochemistry, 640, 114546. https://doi.org/10.1016/j.ab.2022.114546
  89. R, Sasisekharan. (2021). Preparing for the Future—Nanobodies for Covid-19? The New England Journal of Medicine, 384(16). https://doi.org/10.1056/NEJMcibr2101205
  90. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., et al. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956

Regular Issue Subscription Review Article
Volume 01
Issue 01
Received April 13, 2023
Accepted April 29, 2023
Published June 1, 2023