A Computational Study to Elucidate the Phytochemicals as An Antagonist Against Pruritis in Psoriasis

Year : 2023 | Volume :01 | Issue : 02 | Page : 49-61
By

    Prateeksha Vijayakumar

  1. Samiksha Bhor

  1. Student, Department of Life Sciences, Garden City University, Karnataka, India
  2. Bioinformatics Associate, Department of Bioinformatics, Bionome Benglore, Karnataka, India

Abstract

Objective: Psoriasis is a chronic, non-contagious, auto-immune skin disorder that causes inflammation, pain, and itching in the affected areas. The etiology of this condition is not entirely understood, and while there are treatments available to manage the symptoms, there is currently no cure. The Transient receptor potential cation channel, subfamily Vanillin, member 3 (TRPV3), present in keratinocytes, allegedly had a part in the development of psoriasis-related pain and itching. Specifically, this report’s main goal was to identify a potential antagonist (an anti-pruritic medication) that could desensitize TRPV3, by blocking its activity and reducing these symptoms. Methods: An in-silico approach was carried out by docking the chosen twelve phytocompounds based on the recent pre-clinical studies, with the TRPV3 target using Auto dock 4.2 after optimizing the crystal structure of the protein and preparation of ligands. Bio via discovery studio was used to visualize the 3D and 2D interactions and draw a conclusion from the results obtained. Results: Almost all compounds showed good binding energy values, but Hypericin, Kaempferol, Quercetin, and Emodin showed stronger binding affinities and proved to be efficient antagonists against TRPV3. Conclusion: Further clinical studies and improvements are needed in the near future to confirm these natural compounds as useful antipruritic
agents in the treatment of psoriasis.

Keywords: Psoriasis vulgaris, Phytocompounds, Molecular docking, Autodocking, ADME analysis, pruritis, anti-psoriatic drug, Phytochemicals, Keratinocytes, TRPV3, Virtual screening, Pharmacokinetic profiling

[This article belongs to International Journal of Bioinformatics and Computational Biology(ijbcb)]

How to cite this article: Prateeksha Vijayakumar, Samiksha Bhor.A Computational Study to Elucidate the Phytochemicals as An Antagonist Against Pruritis in Psoriasis.International Journal of Bioinformatics and Computational Biology.2023; 01(02):49-61.
How to cite this URL: Prateeksha Vijayakumar, Samiksha Bhor , A Computational Study to Elucidate the Phytochemicals as An Antagonist Against Pruritis in Psoriasis ijbcb 2023 {cited 2023 Aug 04};01:49-61. Available from: https://journals.stmjournals.com/ijbcb/article=2023/view=114935


Browse Figures

References

  1. Agrawal, Anurag & Kulkarni, Giriraj & Lakshmayya,. (2020). Molecular docking study to elucidate the anti-pruritic mechanism of selected natural ligands by desensitizing TRPV3 ion channel in Psoriasis: An in silico Indian journal of biochemistry & biophysics. 57. 578-583.
  2. Gong, Ke & Guo, Wen & Du, Kaiqing & Wang, Fang & Li, Mengli & Guo, Jianhui. (2022). Mechanism of Huoluo Xiaoling Dan in the Treatment of Psoriasis Based on Network Pharmacology and Molecular Docking. Evidence-Based Complementary and Alternative Medicine. 2022. 10.1155/2022/7053613.
  3. Agrawal, Anurag & Awasthi, Rajendra & Kulkarni, Giriraj & Lakshmayya,. (2022). A bioinformatics approach to establish P38α MAPK inhibitory mechanism of selected natural products in psoriasis. Indian Journal of Biochemistry & Biophysics. 59. 165-171.
  4. Gupta, Sonali & Tewatia, Parul & Misri, Jyoti & Singh, Rajni. (2017). Molecular Modeling of Cloned Bacillus subtilis Keratinase and Its Insinuation in Psoriasis Treatment Using Docking Studies. Indian Journal of Microbiology. 57. 10.1007/s12088-017-0677-x.
  5. Ibezim, Akachukwu & Onah, Emmanuel & Dim, Ebubechukwu & Ntie-Kang, Fidele. (2021). A computational multi-targeting approach for drug repositioning for psoriasis treatment. BMC Complementary and Alternative Medicine. 21. 10.1186/s12906-021-03359-2.
  6. Singh, Omveer & Rahman, Mahbubur & Yashika, & Kaur, Manveen & Anurag,. (2023). A REVIEW ON PSORIASIS. NeuroQuantology. 20. 5786-5793|. 10.48047/NQ.2022.20.16.NQ880588.
  7. Paramalingam, Dinika & Li, Bowen & Reynolds, Nick & Zuliani, Paolo. (2023). Computational Modelling of Immune Interaction and Epidermal Homeostasis in Psoriasis. 10.1101/2023.02.23.529657.
  8. Torres, Tiago & Filipe, Paulo & Brandão, Francisco & Figueiredo, Américo & Soares, António & Basto, Artur & Rebelo, Clarisse & Correia, Osvaldo & Ferreira, Paulo & Brasileiro, Ana & Mendes-Bastos, Pedro & Paiva-Lopes, Maria & Pinto, Gabriela & Severo, Milton & Mendonça, Denisa & Oliveira, Pedro & Selores, Manuela & Massa, Antonio & Pereira, Marta & Venereology, On. (2023). Epidemiology of Psoriasis in Portugal: A Population-Based Study. Acta Médica Portuguesa. 10.20344/amp.19048.
  9. Ahmad, Mohammad Zaki & Mohammed, Abdul & Algahtani, Mohammed & Mishra, Awanish & Ahmad, Javed. (2022). Nanoscale Topical Pharmacotherapy in Management of Psoriasis: Contemporary Research and Scope. Journal of Functional Biomaterials. 14. 19. 10.3390/jfb14010019.
  10. Honma, Masaru & Hayashi, Kei. (2021). Psoriasis: Recent progress in molecular‐targeted therapies. The Journal of Dermatology. 48. 10.1111/1346-8138.15727.
  11. Sethi, Aaftaab & Joshi, Khushboo & Sasikala, K. & Alvala, Mallika. (2019). Molecular Docking in Modern Drug Discovery: Principles and Recent Applications.
  12. Zothantluanga, James & Chetia, Dr. Dipak. (2022). A beginner’s guide to molecular docking. 1. 37-40. 10.58920/sciphy01020037.
  13. Um, Ji & Kim, Han & Kim, Jin & Park, Jin & Lee, So & Chung, Bo & Park, Chun & Kim, Hye One. (2022). TRPV3 and Itch: The Role of TRPV3 in Chronic Pruritus according to Clinical and Experimental Evidence. International Journal of Molecular Sciences. 23. 14962. 10.3390/ijms232314962.
  14. Su, Wuyue & Qiao, Xue & Wang, Wumei & He, Shengnan & Liang, Ke & Hong, Xuechuan. (2023). TRPV3: Structure, Diseases, and Modulators. Molecules. 28. 774. 10.3390/molecules28020774.
  15. Shen, Y.-J & Zhang, X.-R & Wu, Y. & Wang, K.-W & Liu, Z.-M & Jin, H.-W & Zhang, L.-R & Zhang, L.-H. (2018). Identification of novel selective TRPV3 antagonists based on virtual screening, molecular docking and bioassay. Yaoxue Xuebao. 53. 966-975. 10.16438/j.0513-4870.2018-0047.
  16. Martin, Lisa & Fraillon, Emma & Chevalier, Fabien & Fromy, Bérengère. (2022). Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis. 10.5772/intechopen.103792.
  17. Tripathy, Chandra & Bhattacharya, Deepak. (2022). Psoriasis Vrs Cassia Fistula: In-Silico Study. Saudi Journal of Medicine. 7. 10.36348/sjm.2022.v07i03.005.
  18. Meng, Ciara. (2020). Novel insights into the TRPV3-mediated itch in atopic dermatitis. The Journal of allergy and clinical immunology.
  19. Fan, Junping & Hu, Linghan & Yue, Zongwei & Liao, Daohong & Guo, Fusheng & Ke, Han & Jiang, Daohua & Yang, Yong & Lei, Xiaoguang. (2022). Structural basis of TRPV3 inhibition by an antagonist. Nature Chemical Biology. 19. 1-10. 10.1038/s41589-022-01166-5.
  20. Liu, Qiang & Wang, Jin & Wei, Xin & Hu, Juan & Conghui, Ping & Gao, Yue & Xie, Chang & Wang, Peiyu & Cao, Peng & Cao, Zhengyu & Yu, Ye & Li, Dongdong & Yao, Jing. (2021). Therapeutic inhibition of keratinocyte TRPV3 sensory channel by local anesthetic dyclonine. eLife. 10. 10.7554/eLife.68128.
  21. Kombate, Bignoate & Kossi, Metowogo. (2023). Pharmacological mechanisms of medicinal plant extracts in the treatment of dermatological diseases: in vitro, in vivo studies and clinical trials. Journal of Dermatology & Cosmetology. 7. 1-7. 10.15406/jdc.2023.07.00224.
  22. Nowak-Perlak, Martyna & Szpadel, Krzysztof & Jabłońska, Izabella & Pizon, Monika & Woźniak, Marta. (2022). Promising Strategies in Plant-Derived Treatments of Psoriasis-Update of In Vitro, In Vivo, and Clinical Trials Studies. Molecules. 10.3390/molecules27030591.
  23. BEHZADI, Payam & Gajdács, Márió. (2021). Worldwide Protein Data Bank (wwPDB): A virtual treasure for research in biotechnology. European Journal of Microbiology and Immunology. 11. 10.1556/1886.2021.00020.
  24. Helgren, Travis & Hagen, Timothy. (2017). Demonstration of AutoDock as an Educational Tool for Drug Discovery. Journal of Chemical Education. 94. 10.1021/acs.jchemed.6b00555.
  25. Kim, Sunghwan & Chen, Jie & Cheng, Tiejun & Gindulyte, Asta & He, Jia & He, Siqian & Li, Qingliang & Shoemaker, Benjamin & Thiessen, Paul & Yu, Bo & Zaslavsky, Leonid & Zhang, Jian & Bolton, Evan. (2022). PubChem 2023 update. Nucleic acids research. 51. 10.1093/nar/gkac956.
  26. O’Boyle, Noel & Banck, Michael & James, Craig & Morley, Chris & Vandermeersch, Tim & Hutchison, Geoffrey. (2011). Open Babel: An Open Chemical Toolbox. Journal of cheminformatics. 3. 33. 10.1186/1758-2946-3-33.
  27. Shidi, Tang & Chen, Ruiqi & Lin, Mengru & Lin, Qingde & Zhu, Yanxiang & Ding, Ji & Hu, Haifeng & Ling, Ming & Wu, Jiansheng. (2022). Accelerating AutoDock Vina with GPUs. Molecules. 27. 3041. 10.3390/molecules27093041.
  28. Daina, Antoine & Michielin, Olivier & Zoete, Vincent. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 7. 42717. 10.1038/srep42717.
  29. Gordon, Kenneth & Feldman, Steven & Koo, John & Menter, Alan & Rolstad, Tara & Krueger, Gerald. (2005). Definitions of Measures of Effect Duration for Psoriasis Treatments. Archives of dermatology. 141. 82-4. 10.1001/archderm.141.1.82.
  30. Augustin, Matthias & Langenbruch, A. & Naatz, Mandy & Reich, K. & Körber, Andreas & Maaßen, D. & Mrowietz, U. & Thaçi, D. & Kiedrowski, R. & Radtke, Marc. (2018). Definition of psoriasis severity in routine clinical care: current guidelines fail to capture the complexity of long‐term psoriasis management. British Journal of Dermatology. 179. 10.1111/bjd.17128.
  31. Boehncke, Wolf-Henning. (2018). Systemic Inflammation and Cardiovascular Comorbidity in Psoriasis Patients: Causes and Consequences. Frontiers in Immunology. 9. 579. 10.3389/fimmu.2018.00579.
  32. Nilius, Bernd & Biro, Tamás & Owsianik, Grzegorz. (2013). TRPV3: Time to decipher a poorly understood family member!. The Journal of physiology. 592. 10.1113/jphysiol.2013.255968.
  33. Shi, Di-Jing & Ye, Sheng & Cao, Xu & Zhang, Rongguang & Wang, Kewei. (2013). Crystal Structure of the N-Terminal Ankyrin Repeat Domain of TRPV3 Reveals Unique Conformation of Finger 3 Loop Critical for Channel Function. Protein & cell. 4. 10.1007/s13238-013-3091-0.
  34. Yang, Pu & Feng, Jing & Luo, Jialie & Mack, Madison & Hu, Hongzhen. (2017). A Critical Role for TRP Channels in the Skin. 10.4324/9781315152837-6.
  35. Koivisto, Ari-Pekka & Belvisi, Maria & Gaudet, Rachelle & Szallasi, Arpad. (2021). Advances in TRP channel drug discovery: from target validation to clinical studies. Nature Reviews Drug Discovery. 21. 1-19. 10.1038/s41573-021-00268-4.
  36. Nilius, Bernd & Owsianik, Grzegorz. (2011). The transient receptor potential family of ion channels. Genome biology. 12. 218. 10.1186/gb-2011-12-3-218.
  37. Kim, Sung & Patapoutian, Ardem & Grandl, Jörg. (2013). Single Residues in the Outer Pore of TRPV1 and TRPV3 Have Temperature-Dependent Conformations. PloS one. 8. e59593. 10.1371/journal.pone.0059593.
  38. Fatima, Mahar & Slade, Hannah & Horwitz, Lorraine & Shi, Angela & Liu, Jingyi & McKinstry, Delaney & Villani, Troy & Xu, Haoxing & Duan, Bo. (2022). Abnormal Somatosensory Behaviors Associated With a Gain-of-Function Mutation in TRPV3 Channels. Frontiers in Molecular Neuroscience. 14. 10.3389/fnmol.2021.790435.
  39. kumar singh, Appu & McGoldrick, Luke & Sobolevsky, Alexander. (2018). Structure and Gating Mechanism of the Transient Receptor Potential Channel TRPV3. Nature Structural & Molecular Biology. 25. 10.1038/s41594-018-0108-7.
  40. Svendsen, Mathias & Jeyabalan, Janithika & Andersen, Klaus & Andersen, Flemming & Johannessen, Helle. (2016). Worldwide Utilization of Topical Remedies in Treatment of Psoriasis: A Systematic Review. The Journal of dermatological treatment. 28. 1-36. 10.1080/09546634.2016.1254331.
  41. Farahnik, Benjamin & Sharma, Divya & Alban, Joseph & Sivamani, Raja. (2017). Topical Botanical Agents for the Treatment of Psoriasis: A Systematic Review. American Journal of Clinical Dermatology. 18. 10.1007/s40257-017-0266-0.
  42. Pandey, Ashish & Shukla, Alok & Dubey, Ramesh & Pratap, Ravi. (2021). A review on the important phytochemicals and their role in psoriasis. Journal of Applied and Natural Science. 13. 880-896. 10.31018/jans.v13i3.2717.

Regular Issue Subscription Original Research
Volume 01
Issue 02
Received May 12, 2023
Accepted July 25, 2023
Published August 4, 2023