Biomedical Approach to Developing and Characterizing Chitosan Nanoparticles Encapsulating Urapidil for Hypertension Management

Year : 2024 | Volume :02 | Issue : 01 | Page : 43-51
By

    V. Tulasi

  1. A. Saritha

Abstract

The aim of this study was to create Chitosan Nanoparticles loaded with Urapidil to achieve controlled drug release, enhance solubility, and reduce dosing frequency to improve patient adherence to therapy for hypertension. Urapidil was formulated into nanoparticles via the ionic-gelation method using Chitosan as a polymer, Sodium tripolyphosphate as a cross-linking agent, and filled into hard gelatin capsules after lyophilization. Pre-formulation studies including melting point determination and absorption maximum (268 nm) indicated stability, safety, and effectiveness of the drug and excipients within the specified range. Different concentrations of Chitosan (0.1%, 0.15%, 0.2%, 0.25%, 0.3%, 0.4%, and 0.5%) were used to prepare Urapidil-loaded Chitosan Nanoparticles, along with Sodium tripolyphosphate as a cross-linking agent and Tween 80 as a deaggregating agent. Characterization of all seven formulations revealed a percentage yield within the range of 78.84% to 87.25% and entrapment efficiency between 83.40% to 93.15%, with higher concentrations of polymer resulting in increased entrapment efficiency. Solubility analysis showed improvement after formulation, with the solubility of formulation F5 increased to 9.4933 mg/ml in distilled water and 13.251 mg/ml in phosphate buffer pH 6.8. In vitro release studies demonstrated controlled release with formulation F5 releasing 95.03% of the drug after 12 hours. This formulation was selected as the optimized one due to its higher entrapment efficiency, drug content, and prolonged drug release profile. Accelerated stability studies showed no significant changes in appearance, drug content, or entrapment efficiency of formulation F5 after 90 days at different storage conditions. Overall, formulation F5 containing 0.3% Chitosan concentration emerged as the optimal formulation for achieving controlled drug release.

Keywords: Formulation, Characterization, Urapidil, Chitosan Nanoparticles, biomedical

[This article belongs to International Journal of Biomedical Innovations and Engineering(ijbie)]

How to cite this article: V. Tulasi, A. Saritha.Biomedical Approach to Developing and Characterizing Chitosan Nanoparticles Encapsulating Urapidil for Hypertension Management.International Journal of Biomedical Innovations and Engineering.2024; 02(01):43-51.
How to cite this URL: V. Tulasi, A. Saritha , Biomedical Approach to Developing and Characterizing Chitosan Nanoparticles Encapsulating Urapidil for Hypertension Management ijbie 2024 {cited 2024 Mar 01};02:43-51. Available from: https://journals.stmjournals.com/ijbie/article=2024/view=137843


References

  1. Gaur M., Misra C., Yadav A.B., Swaroop S., Maolmhuaidh F., Bechelany M., Barhoum A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. 2021;14:5978. doi: 10.3390/ma14205978. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  2. Barhoum A., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. [CrossRef] [Google Scholar]
  3. Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  4. Barhoum A., El-Maghrabi H.H., Nada A.A., Sayegh S., Roualdes S., Renard A., Iatsunskyi I., Coy E., Bechelany M. Simultaneous hydrogen and oxygen evolution reactions using free-standing nitrogen-doped-carbon–Co/CoOx nanofiber electrodes decorated with palladium nanoparticles. Mater. Chem. A. 2021;9:17724–17739. doi: 10.1039/d1ta03704h. [CrossRef] [Google Scholar]
  5. Prasad S., Kumar V., Kirubanandam S., Barhoum A. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends. Elsevier Inc.; Amsterdam, The Netherlands: 2018. Engineered nanomaterials: Nanofabrication and surface functionalization; pp. 305–340. [CrossRef] [Google Scholar]
  6. Cremers V., Rampelberg G., Barhoum A., Walters P., Claes N., de Oliveira T.M., Van Assche G., Bals S., Dendooven J., Detavernier C. Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition. Coat. Technol. 2018;349:1032–1041. doi: 10.1016/j.surfcoat.2018.06.048. [CrossRef] [Google Scholar]
  7. Hammani S., Moulai-Mostefa N., Samyn P., Bechelany M., Dufresne A., Barhoum A. Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends. 2020;13:926. doi: 10.3390/ma13040926. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  8. Barhoum A., Van Lokeren L., Rahier H., Dufresne A., Van Assche G. Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. Mater. Sci. 2015;50:7908–7918. doi: 10.1007/s10853-015-9327-z. [CrossRef] [Google Scholar]
  9. Rehan M., Barhoum A., Khattab T., Gätjen L., Wilken R. Colored, photocatalytic, antimicrobial and UV-protected viscose fibers decorated with Ag/Ag2CO3 and Ag/Ag3PO4 Cellulose. 2019;26:5437–5453. doi: 10.1007/s10570-019-02497-8. [CrossRef] [Google Scholar]
  10. Abdel-Haleem F.M., Salah A., Rizk M.S., Moustafa H., Bechelany M., Barhoum A. Carbon-based Nanosensors for Salicylate Determination in Pharmaceutical Preparations. 2019;31:778–789. doi: 10.1002/elan.201800728. [CrossRef] [Google Scholar]
  11. Abdel-Haleem F., Mahmoud S., Abdel-Ghani N., El Nashar R., Bechelany M., Barhoum A. Polyvinyl Chloride Modified Carbon Paste Electrodes for Sensitive Determination of Levofloxacin Drug in Serum, Urine, and Pharmaceutical Formulations. 2021;21:3150. doi: 10.3390/s21093150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  12. Abdel-Haleem F.M., Gamal E., Rizk M.S., Madbouly A., El Nashar R.M., Anis B., Elnabawy H.M., Khalil A.S.G., Barhoum A. Molecularly Imprinted Electrochemical Sensor-Based Fe2O3@MWCNTs for Ivabradine Drug Determination in Pharmaceutical Formulation, Serum, and Urine Samples. Bioeng. Biotechnol. 2021;9:648704. doi: 10.3389/fbioe.2021.648704. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  13. Parikha Mehrotra, Biosensors and their applications—A review. Oral Biol. Craniofac. Res. 2016;6:153–159. doi: 10.1016/j.jobcr.2015.12.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  14. Rasouli R., Barhoum A., Uludag H. A review of nanostructured surfaces and materials for dental implants: Surface coating, patterning and functionalization for improved performance. Sci. 2018;6:1312–1338. doi: 10.1039/C8BM00021B. [PubMed] [CrossRef] [Google Scholar]
  15. Rasouli R., Barhoum A., Bechelany M., Dufresne A. Nanofibers for Biomedical and Healthcare Applications. Biosci. 2018;19:e1800256. doi: 10.1002/mabi.201800256. [PubMed] [CrossRef] [Google Scholar]
  16. Singh K.R., Nayak V., Singh J., Singh A.K., Singh R.P. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv. 2021;11:24722–24746. doi: 10.1039/D1RA04273D. [CrossRef] [Google Scholar]
  17. Tan K.X., Barhoum A., Pan S., Danquah M.K. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends. Elsevier Inc.; Amsterdam, The Netherlands: 2018. Risks and toxicity of nanoparticles and nanostructured materials; pp. 121–139. [CrossRef] [Google Scholar]
  18. Kim D., Kim J., Park Y.I., Lee N., Hyeon T. Recent Development of Inorganic Nanoparticles for Biomedical Imaging. ACS Central Sci. 2018;4:324–336. doi: 10.1021/acscentsci.7b00574. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  19. Mihai M.M., Dima M.B., Dima B., Holban A.M. Nanomaterials for Wound Healing and Infection Control. 2019;12:2176. doi: 10.3390/ma12132176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  20. Said M.M., Rehan M., El-Sheikh S.M., Zahran M.K., Abdel-Aziz M.S., Bechelany M., Barhoum A. Multifunctional Hydroxyapatite/Silver Nanoparticles/Cotton Gauze for Antimicrobial and Biomedical Applications. 2021;11:429. doi: 10.3390/nano11020429. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Regular Issue Subscription Original Research
Volume 02
Issue 01
Received February 8, 2024
Accepted February 12, 2024
Published March 1, 2024