[{“box”:0,”content”:”
n
n
- n t
n
Sumit Halder
[/foreach]
n
n
n
- [foreach 286] [if 1175 not_equal=””]n t
- Student, Department of Computer Science and Engineering, Greater Kolkata College of Engineering and Management (GKCEM), Kolkata, India
n[/if 1175][/foreach]
n
Abstract
nHeart attacks have become a prevalent and serious condition in recent years due to a variety of causes. Numerous variables, including age, sex, fat, and others, can be used to predict it. In the current study, it was found that a data set with 13 parameters and 302 distinct data values, collected from a Kaggle dataset to assess patient condition, was covered. This article delves into the application of machine learning and artificial intelligence algorithms for the prevention of heart disease. The primary objective of this study is to enhance the accuracy and precision of identifying cardiac ailments by utilizing advanced algorithms. These algorithms play a pivotal role in discerning the presence or absence of cardiac issues within a given case. By harnessing the power of these technologies, the article aims to revolutionize cardiac complaint detection, ultimately contributing to early intervention and improved patient outcomes in the realm of heart disease management.
n
Keywords: Artificial Intelligence, Machine Learning, Regression, SVM, Logistic Regression
n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Biomedical Innovations and Engineering(ijbie)]
n
n
n
n
n
nn
nn
Full Text
n[if 992 equals=”Open Access”] https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/09/d5a9da2c-8-13-heart-attack-prediction-using-machine-learning.pdf[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/09/d5a9da2c-8-13-heart-attack-prediction-using-machine-learning.pdf’);n }nelse if (fieldValue == ‘administrator’) { document.write(‘https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/09/d5a9da2c-8-13-heart-attack-prediction-using-machine-learning.pdf’); }nelse if (fieldValue == ‘ijbie’) { document.write(‘https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/09/d5a9da2c-8-13-heart-attack-prediction-using-machine-learning.pdf’); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]n
Browse Figures
n
n
n[/if 379]n
References
n[if 1104 equals=””]n
1. Palaniappan S,Awang R, Intelligent heart disease prediction system using data mining techniques. 2008 IEEE/ACS International Conference on Computer Systems and Applications, 2008, Doha, Qatar, pp. 108-115, doi: 10.1109/AICCSA.2008.4493524.
2. Nikan S, Gwadry-Sridhar F, Bauer M, Machine learning application to predict the risk of coronary artery atherosclerosis. 2016 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2016, pp. 34-39, doi: 10.1109/CSCI.2016.0014.
3. Bashir S, Qamar U,Younus Javed M, An ensemble based decision support framework for intelligent heart disease diagnosis. International Conference on Information Society (i- Society 2014), London, UK, 2014, pp. 259-264, doi: 10.1109/i-Society.2014.7009056.
4. Ramalingam V V, Dandapath A, Raja, M K, Heart disease prediction using machine learning techniques: a survey. Int. J. Eng. Technol.2018, 7(2): 684-7p.
5. Chapman, P., Clinton, J., Kerber, R. Khabeza, T., Reinartz, T., Shearer, C., Wirth, R.: “CRISP- DM 1.0: Step by step data mining guide”, SPSS, 1-78, 2000.
6. Charly, K.: “Data Mining for the Enterprise”, 31st Annual Hawaii Int. Conf. on System Sciences, IEEE Computer, 7, 295-304, 1998.
7. Fayyad, U: “Data Mining and Knowledge Discovery in Databases: Implications fro scientific databases”, Proc. of the 9th Int. Conf. on Scientific and Statistical Database Management, Olympia, Washington, USA, 2-11, 1997.
8. Data A. Applied Data Mining. Statistical Methods for Business and Industry PAOLO GIUDICI. Faculty of Economics University of Pavia Italy – PDF Free Download [Internet]. Docplayer.net. 2013 [cited 2023 Aug 7]. Available from: https://docplayer.net/16673861-Applied-data-mining-statistical-methods-for-business-and-industry-paolo-giudici-faculty-of-economics-university-of-pavia-italy.html
9. Han and Kamber: Data Mining—Concepts and Techniques, 2nd ed., Morgan Kaufmann, 2006 [Internet]. Illinois.edu. 2023 [cited 2023 Aug 7]. Available from: https://hanj.cs.illinois.edu/bk3/bk3_slidesindex.htm.
10. Mohd D, Raflah Awang. Intelligent heart disease prediction system using data mining techniques [Internet]. ResearchGate. unknown; 2008 [cited 2023 Aug 7]. Available from: https://www.researchgate.net/publication/4329399_Intelligent_heart_disease_prediction_system_using_data_mining_techniques
11. Kaur, H., Wasan, S. K.: “Empirical Study on Applications of Data Mining Techniques in Healthcare”, Journal of Computer Science 2(2), 194-200, 2006.
nn[/if 1104][if 1104 not_equal=””]n
- [foreach 1102]n t
- [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
n[/foreach]
n[/if 1104]
nn
nn[if 1114 equals=”Yes”]n
n[/if 1114]
n
n
n
International Journal of Biomedical Innovations and Engineering
n
n
n
n
n
n
Volume | 01 |
Issue | 01 |
Received | July 13, 2023 |
Accepted | July 30, 2023 |
Published | August 10, 2023 |
n
n
n
n
n[/foreach]
n[/if 1190] [if 1177 not_equal=””]n
n
n[/foreach]
n[/if 1177]
n
n
n
n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n n function myfun() {n x = document.getElementById(“editor”);n y = document.getElementById(“down”);n z = document.getElementById(“up”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n function myfun2() {n x = document.getElementById(“reviewer”);n y = document.getElementById(“down2”);n z = document.getElementById(“up2”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n”}]