Introduction to Biological Networks and their Contributions to Systems Biology

Year : 2024 | Volume : | : | Page : –
By

Khushboo

Pulkit Singh

Shazia Haider

  1. Student Department of Biosciences, Jamia Millia Islamia New Delhi India
  2. Student Department of Biosciences, Jamia Millia Islamia New Delhi India
  3. Assistant Professor Department of Biosciences, Jamia Millia Islamia New Delhi India

Abstract

Biological networks provide a conceptual framework to represent and analyze the intricate interconnections among the numerous components that make up living systems. This review paper elucidates the foundational principles of networks and their diverse applications in systems biology, highlighting their crucial role in understanding the inherent complexity of biological processes. Utilizing graph theory, these networks represent entities like genes, proteins, and metabolites as nodes, with their interactions depicted as edges. The review explores core graph theory elements such as nodes, edges, hubs, and motifs, essential for network analysis. It delves into topological parameters like degree, centrality measures, and clustering coefficients, quantifying structural properties and connectivity patterns, offering insights into network organization and dynamics. Additionally, the review comprehensively examines various biological networks, including protein-protein interaction networks, gene regulatory networks, metabolic networks, cell signaling networks, and ecological networks, highlighting their distinct characteristics and applications. Network visualization techniques, such as force-directed layouts and circular representations, are also explored, facilitating effective communication of complex network structures. The integration of omics technologies with network analysis is addressed, emphasizing the importance of mathematical modeling in deciphering disease mechanisms across multiple scales. The review also underscores the application of network based approaches in identifying potential drug targets and understanding complex diseases like cancer and diabetes. Overall, this comprehensive review provides an exhaustive introduction to biological networks, their theoretical foundations, analytical tools, and applications in systems biology, accentuating their pivotal role in unraveling the intricacies of living systems and paving the way for future advancements in biomedical research and personalized medicine.

Keywords: Biological Network, Graph Theory, Topological Parameters, Network Biology, Therapeutics

How to cite this article: Khushboo, Pulkit Singh, Shazia Haider. Introduction to Biological Networks and their Contributions to Systems Biology. International Journal of Bioinformatics and Computational Biology. 2024; ():-.
How to cite this URL: Khushboo, Pulkit Singh, Shazia Haider. Introduction to Biological Networks and their Contributions to Systems Biology. International Journal of Bioinformatics and Computational Biology. 2024; ():-. Available from: https://journals.stmjournals.com/ijbcb/article=2024/view=148180





References

  1. Lesne A. Complex Networks: from Graph Theory to Biology. Letters in Mathematical Physics. 2006;78(3):235-62.
  2. Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, et al. Using graph theory to analyze biological networks. BioData Min. 2011;4:10.
  3. van Steen M. Graph Theory and Complex Networks: An Introduction. 2010.
  4. Erciyes K. Graph-Theoretical Analysis of Biological Networks: A Survey. Computation [Internet]. 2023; 11(10).
  5. Wilson RJ. Introduction to graph theory: John Wiley & Sons, Inc.; 1986.
  6. Arul SM, Senthil G, Jayasudha S, Alkhayyat A, Azam K, Elangovan R. Graph Theory and Algorithms for Network Analysis. E3S Web Conf. 2023;399:08002.
  7. BioRender. Create Professional Science Figures in Minutes 2023 Available from: https://www.biorender.com/.
  8. Kloska SM, Pałczyński K, Marciniak T, Talaśka T, Wysocki BJ, Davis P, Wysocki TA. Integrating glycolysis, citric acid cycle, pentose phosphate pathway, and fatty acid beta-oxidation into a single computational model. Sci Rep. 2023;13(1):14484.
  9. Grossman P. Introduction to graph theory. 2009. p. 180-205.
  10. Samanta P. Introduction to Graph Theory2011.
  11. Fuller GG, Kim JK. Compartmentalization and metabolic regulation of glycolysis. J Cell Sci. 2021;134(20).
  12. Dehmer M, Chen Z, Emmert-Streib F, Tripathi S, Mowshowitz A, Levitchi A, et al. Measuring the complexity of directed graphs: A polynomial-based approach. PLoS One. 2019;14(11):e0223745.
  13. Newman M. Networks: An Introduction: Oxford University Press; 2010.
  14. He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet. 2006;2(6):e88.
  15. Goymer P. Network biology: why do we need hubs? Nat Rev Genet. 2008;9(9):650.
  16. Thomas JP, Modos D, Korcsmaros T, Brooks-Warburton J. Network Biology Approaches to Achieve Precision Medicine in Inflammatory Bowel Disease. Front Genet. 2021;12:760501.
  17. Amaral LA, Scala A, Barthelemy M, Stanley HE. Classes of small-world networks. Proc Natl Acad Sci U S A. 2000;97(21):11149-52.
  18. Rice J, Kershenbaum A, Stolovitzky G. Lasting impressions: Motifs in protein-protein maps may provide footprints of evolutionary events. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:3173-4.
  19. Brede M. Networks—An Introduction. Mark E. J. Newman. (2010, Oxford University Press.). Artificial life. 2012;18:241-2.
  20. Opsahl T, Agneessens F, Skvoretz J. Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths. Social Networks – SOC NETWORKS. 2010;32:245-51.
  21. Mengyuan W, Wang H, Zheng H. A Mini Review of Node Centrality Metrics in Biological Networks. International Journal of Network Dynamics and Intelligence. 2022:99-110.
  22. Telesford QK, Joyce KE, Hayasaka S, Burdette JH, Laurienti PJ. The ubiquity of small-world networks. Brain Connect. 2011;1(5):367-75.
  23. Imran M, Iqbal M, Liu Y, Baig AQ, Khalid W, Zaighum M. Computing Eccentricity-Based Topological Indices of 2-Power Interconnection Networks. Journal of Chemistry. 2020;2020.
  24. Evans T, Chen B. Linking the network centrality measures closeness and degree. Communications Physics. 2022;5.
  25. Okamoto K, Chen W, Li X-Y, editors. Ranking of Closeness Centrality for Large-Scale Social Networks. Frontiers in Algorithmics; 2008 2008//; Berlin, Heidelberg: Springer Berlin Heidelberg.
  26. Freeman L. A Set of Measures of Centrality Based on Betweenness. Sociometry. 1977;40:35-41.
  27. Newman MEJ. A measure of betweenness centrality based on random walks. Social Networks. 2005;27(1):39-54.
  28. Chen F, Wang X, Yuan Z. The average path length of scale free networks. Communications in Nonlinear Science and Numerical Simulation – COMMUN NONLINEAR SCI NUMER SI. 2008;13:1405-10.
  29. Smith R. Average Path Length in Complex Networks: Patterns and Predictions. 2007.
  30. Lu P, Yu J. A mixed clustering coefficient centrality for identifying essential proteins. International Journal of Modern Physics B. 2020;34(10):2050090.
  31. Arrigo F, Higham D, Tudisco F. A framework for second-order eigenvector centralities and clustering coefficients. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2020;476:20190724.
  32. Bihari A, Pandia M. Eigenvector centrality and its application in research professionals’ relationship network2015.
  33. Bihari A, Tripathi S, Pandia M. Key Author Analysis in Research Professionals’ Collaboration Network based on MST using Centrality Measures2016. 1-6 p.
  34. Bliss CA, Danforth CM, Dodds PS. Estimation of global network statistics from incomplete data. PLoS One. 2014;9(10):e108471.
  35. Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology. 2014;8:S11-S.
  36. Giscard PL, Wilson RC. A centrality measure for cycles and subgraphs II. Appl Netw Sci. 2018;3(1):9.
  37. Estrada E, Rodriguez-Velazquez JA. Subgraph Centrality in Complex Networks. Physical review E, Statistical, nonlinear, and soft matter physics. 2005;71:056103.
  38. Viacava Follis A. Centrality of drug targets in protein networks. BMC Bioinformatics. 2021;22(1):527.
  39. Borgatti S. Centrality and Network Flow. Social Networks. 2005;27:55-71.
  40. Alm E, Arkin AP. Biological networks. Curr Opin Struct Biol. 2003;13(2):193-202.
  41. Schmidt H, Cho KH, Jacobsen EW. Identification of small scale biochemical networks based on general type system perturbations. Febs j. 2005;272(9):2141-51.
  42. Avcu N, Demir G, Pekergin F, Alyuruk H, Cavas L, Güzeliş C. Discriminant based bistability analysis of a TMG induced lac operon model supported with boundedness and local stability results. Turkish Journal of Electrical Engineering & Computer Sciences. 2016;24:719-32.
  43. Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature. 2000;406(6794):378-82.
  44. Chand A, Chettiyankandy P, Moharana M, Sahu S, Pradhan S, Pattanayak S, et al. Computational Methods for Developing Novel Antiaging Interventions. 2018. p. 175-93.
  45. Favela LH. Review of Networks: An introduction by M. E. J. Newman. Dynamical Systems Magazine. 2014.
  46. Thomson T, Sewer A, Calvino-Martin F, Belcastro V, Frushour B, Gebel S, et al. Quantitative Assessment of Biological Impact Using Transcriptomic Data and Mechanistic Network Models. Toxicology and applied pharmacology. 2013;272.
  47. Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5(2):101-13.
  48. Magger O, Waldman YY, Ruppin E, Sharan R. Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput Biol. 2012;8(9):e1002690.
  49. Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics. 2011;27(1):95-102.
  50. Li Q, Lai L. Prediction of potential drug targets based on simple sequence properties. BMC Bioinformatics. 2007;8:353.
  51. Zhang P, Itan Y. Biological Network Approaches and Applications in Rare Disease Studies. Genes (Basel). 2019;10(10).
  52. Bhat B, Singh G, Sharma R, Yaseen M, Ganai N. Biological Networks: Tools, Methods, and Analysis. 2019. p. 255-86.
  53. Koh GC, Porras P, Aranda B, Hermjakob H, Orchard SE. Analyzing protein-protein interaction networks. J Proteome Res. 2012;11(4):2014-31.
  54. Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One. 2009;4(2):e4345.
  55. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-d61.
  56. Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39(Database issue):D691-7.
  57. Dunne JA, Williams RJ, Martinez ND. Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences. 2002;99(20):12917-22.
  58. Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7(3-4):601-20.
  59. Sneppen K, Krishna S, Semsey S. Simplified models of biological networks. Annu Rev Biophys. 2010;39:43-59.
  60. Mashaghi AR, Ramezanpour A, Karimipour V. Investigation of a protein complex network. The European Physical Journal B – Condensed Matter and Complex Systems. 2004;41(1):113-21.
  61. Nooren IMA, Thornton JM. Diversity of protein–protein interactions. The EMBO Journal. 2003;22(14):3486-92-92.
  62. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, et al. Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 2004;32(Database issue):D497-501.
  63. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D. DIP: the database of interacting proteins. Nucleic Acids Res. 2000;28(1):289-91.
  64. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G. MINT: the Molecular INTeraction database. Nucleic Acids Res. 2007;35(Database issue):D572-4.
  65. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2012;40(Database issue):D841-6.
  66. Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30(1):187-200.
  67. Persson E, Castresana-Aguirre M, Buzzao D, Guala D, Sonnhammer ELL. FunCoup 5: Functional Association Networks in All Domains of Life, Supporting Directed Links and Tissue-Specificity. J Mol Biol. 2021;433(11):166835.
  68. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-d13.
  69. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009;10(4):252-63.
  70. Ma S, Kemmeren P, Gresham D, Statnikov A. De-novo learning of genome-scale regulatory networks in S. cerevisiae. PLoS One. 2014;9(9):e106479.
  71. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587-d92.
  72. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30.
  73. Angelini C, Costa V. Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. Front Cell Dev Biol. 2014;2:51.
  74. Amara A, Frainay C, Jourdan F, Naake T, Neumann S, Novoa-Del-Toro EM, et al. Networks and Graphs Discovery in Metabolomics Data Analysis and Interpretation. Front Mol Biosci. 2022;9:841373.
  75. Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91-101; discussion -3, 19-28, 244-52.
  76. Kabir MH, Patrick R, Ho JWK, O’Connor MD. Identification of active signaling pathways by integrating gene expression and protein interaction data. BMC Syst Biol. 2018;12(Suppl 9):120.
  77. Koutrouli M, Karatzas E, Paez-Espino D, Pavlopoulos GA. A Guide to Conquer the Biological Network Era Using Graph Theory. Front Bioeng Biotechnol. 2020;8:34.
  78. Kiel C, Yus E, Serrano L. Engineering signal transduction pathways. Cell. 2010;140(1):33-47.
  79. Montoya JM, Pimm SL, Solé RV. Ecological networks and their fragility. Nature. 2006;442(7100):259-64.
  80. Ulanowicz RE. Quantitative methods for ecological network analysis. Computational Biology and Chemistry. 2004;28(5):321-39.
  81. Bascompte J, Jordano P, Melián CJ, Olesen JM. The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci U S A. 2003;100(16):9383-7.
  82. Yu D, Kim M, Xiao G, Hwang TH. Review of biological network data and its applications. Genomics Inform. 2013;11(4):200-10.
  83. Altaf-Ul-Amin M, Afendi FM, Kiboi SK, Kanaya S. Systems biology in the context of big data and networks. Biomed Res Int. 2014;2014:428570.
  84. Villoslada P, Steinman L, Baranzini SE. Systems biology and its application to the understanding of neurological diseases. Ann Neurol. 2009;65(2):124-39.
  85. Alzahrani H, Fernstad S. An investigation into various visualization tools for complex biological networks. Information Visualization. 2023;22(4):323-39.
  86. Pavlopoulos GA, Kontou PI, Pavlopoulou A, Bouyioukos C, Markou E, Bagos PG. Bipartite graphs in systems biology and medicine: a survey of methods and applications. Gigascience. 2018;7(4):1-31.
  87. Ullah M, Wolkenhauer O. Stochastic approaches in systems biology. Wiley Interdiscip Rev Syst Biol Med. 2010;2(4):385-97.
  88. Tegnér JN, Compte A, Auffray C, An G, Cedersund G, Clermont G, et al. Computational disease modeling – fact or fiction? BMC Syst Biol. 2009;3:56.
  89. Kiesewetter A, Schmiemann P. Understanding Homeostatic Regulation: The Role of Relationships and Conditions in Feedback Loop Reasoning. CBE Life Sci Educ. 2022;21(3):ar56.
  90. Zanzoni A, Soler-López M, Aloy P. A network medicine approach to human disease. FEBS Lett. 2009;583(11):1759-65.
  91. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56-68.
  92. Mardinoglu A, Nielsen J. Systems medicine and metabolic modelling. J Intern Med. 2012;271(2):142-54.
  93. Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug-target network. Nat Biotechnol. 2007;25(10):1119-26.
  94. Lee CW, Kim SM, Sa S, Hong M, Nam SM, Han HW. Relationship between drug targets and drug-signature networks: a network-based genome-wide landscape. BMC Med Genomics. 2023;16(1):17.
  95. Przytycka TM, Kim Y-A. Network integration meets network dynamics. BMC Biology. 2010;8(1):48.
  96. Somvanshi PR, Venkatesh KV. A conceptual review on systems biology in health and diseases: from biological networks to modern therapeutics. Syst Synth Biol. 2014;8(1):99-116.
  97. Sengupta U, Ukil S, Dimitrova N, Agrawal S. Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications. PLoS One. 2009;4(12):e8100.
  98. Yan W, Xue W, Chen J, Hu G. Biological Networks for Cancer Candidate Biomarkers Discovery. Cancer Inform. 2016;15(Suppl 3):1-7.
  99. Lee EK, Wei X, Wright MD, Baker-Witt F. New PK/PD model directly links diabetes drug dose to blood glucose level for personalized care. AMIA Annu Symp Proc. 2022;2022:672-81.
  100. R S P, Venkatesh K. A conceptual review on systems biology in health and diseases: From biological networks to modern therapeutics. Systems and synthetic biology. 2014;8:99-116.

Ahead of Print Subscription Original Research
Volume
Received April 19, 2024
Accepted May 2, 2024
Published May 28, 2024