Prediction of Molecular Targets for Anthraquinone and Its Analogs for Treatment of Good Pasteur Syndrome

Year : 2023 | Volume :01 | Issue : 01 | Page : 10-27
By

    V Shivaranjani

  1. Student, Department Of Biotechnology, BioNome,, Bengaluru, Karnataka, India

Abstract

Objective: In order to find prospective molecular targets for the treatment of Good Pasteur Syndrome (GPS), a rare autoimmune disease that affects the kidneys and other organs, computational methods and network pharmacology were applied in this work. The goal of the study is to identify particular human proteins that might interact with anthraquinone and its analogues as well as to uncover potential mechanisms of action by which these drugs might treat GPS. Method: The current study’s purpose was to employ computational methodologies to evaluate the efficiency of anthraquinone and its analogs against good pasteur syndrome. The IMPPAT database is used to retrieve potential ligands. While known target proteins associated with GPS were retrieved via the GeneCards database and predicted target proteins related to AQ were screened through the STITCH and TargetNet databases. STRING database was used to construct a protein-protein interaction network. Gene ontology pathway analysis done in ShinyGo 0.76.3 database. The BIOVIA Discovery Studio Visualizer and the virtual screening tool PyRx were used to systematically perform molecular docking.By using ADMETlab 2.0 pharmacological studies were performed. Results: The results from this study showed that these anthraquinone and its analogs have best binding affinity towards targeted proteins and these targets are involved in key pathways related to inflammation, oxidative stress, and immune regulation, which are known to be dysregulated in GPS. Conclusion: These findings may contribute to the development of innovative therapeutic drugs that can specifically target these particular biochemical pathways, thereby resulting in more potent and well-tolerated treatments for this difficult disease.

Keywords: Molecular docking, network pharmacology, anthraquinone, autoimmune, binding affinity, good Pasteur syndrome

[This article belongs to International Journal of Bioinformatics and Computational Biology(ijbcb)]

How to cite this article: V Shivaranjani Prediction of Molecular Targets for Anthraquinone and Its Analogs for Treatment of Good Pasteur Syndrome ijbcb 2023; 01:10-27
How to cite this URL: V Shivaranjani Prediction of Molecular Targets for Anthraquinone and Its Analogs for Treatment of Good Pasteur Syndrome ijbcb 2023 {cited 2023 Apr 24};01:10-27. Available from: https://journals.stmjournals.com/ijbcb/article=2023/view=104218


Browse Figures

References

  1. Li, Y., & Jiang, J. G. (2018). Health functions and structure–activity relationships of natural anthraquinones from plants. Food & function, 9(12), 6063-6080.
  2. Malik, M. S., Alsantali, R. I., Jassas, R. S., Alsimaree, A. A., Syed, R., Alsharif, M. A., … & Ahmed, S. A. (2021). Journey of anthraquinones as anticancer agents–a systematic review of recent literature. RSC advances, 11(57), 35806-35827.
  3. Chien SC, Wu YC, Chen ZW, Yang WC. Naturally occurring anthraquinones: chemistry and therapeutic potential in autoimmune diabetes. Evidence-Based Complementary and Alternative Medicine. 2015 Jan 1;2015.
  4. Wang D, Wang XH, Yu X, Cao F, Cai X, Chen P, Li M, Feng Y, Li H, Wang X. Pharmacokinetics of anthraquinones from medicinal plants. Frontiers in Pharmacology. 2021 Apr 15;12:638993.
  5. Greco, A., Rizzo, M. I., De Virgilio, A., Gallo, A., Fusconi, M., Pagliuca, G., … & De Vincentiis, M. (2015). Goodpasture’s syndrome: a clinical update. Autoimmunity reviews, 14(3), 246-253.
  6. Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of I ndian M edicinal P lants, P hytochemistry A nd T herapeutics. Scientific reports, 8(1), 4329.
  7. Yao, Z. J., Dong, J., Che, Y. J., Zhu, M. F., Wen, M., Wang, N. N., … & Cao, D. S. (2016). TargetNet: a web service for predicting potential drug–target interaction profiling via multi-target SAR models. Journal of computer-aided molecular design, 30, 413-424.
  8. Kuhn, M., Szklarczyk, D., Franceschini, A., Von Mering, C., Jensen, L. J., & Bork, P. (2012). STITCH 3: zooming in on protein–chemical interactions. Nucleic acids research, 40(D1), D876-D880.
  9. Fan, J., Fu, A., & Zhang, L. (2019). Progress in molecular docking. Quantitative Biology, 7, 83-89.
  10. Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., … & Cao, D. (2021). ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5-W14.
  11. Dowsett, T., & Oni, L. (2022). Anti-glomerular basement membrane disease in children: a brief overview. Pediatric Nephrology, 37(8), 1713-1719.
  12. Kelly, P. T., & Haponik, E. F. (1994). Goodpasture syndrome: molecular and clinical advances. Medicine, 73(4), 171-185.
  13. Bolton, W. K. (1996). Goodpasture’s syndrome. Kidney international, 50(5), 1753-1766.
  14. Berends-De Vries, T., Boerma, S., Doornebal, J., Dikkeschei, B., Stegeman, C., & Veneman, T. F. (2017). Goodpasture’s syndrome with negative anti-glomerular basement membrane antibodies. European journal of case reports in internal medicine, 4(8).
  15. Alenzi, F. Q., Salem, M. L., Alenazi, F. A., & Wyse, R. K. (2012). CELLULAR AND MOLECULAR ASPECTS OF GOOD PASTURE SYNDROME.
  16. Xin, D., Li, H., Zhou, S., Zhong, H., & Pu, W. (2022). Effects of anthraquinones on immune responses and inflammatory diseases. Molecules, 27(12), 3831.
  17. Ohlsson, S., Herlitz, H., Lundberg, S., Selga, D., Mölne, J., Wieslander, J., & Segelmark, M. (2014). Circulating anti–glomerular basement membrane antibodies with predominance of subclass IgG4 and false-negative immunoassay test results in anti–glomerular basement membrane disease. American journal of kidney diseases, 63(2), 289-293.
  18. Olaru F, Wang XP, Luo W, Ge L, Miner JH, Kleinau S, Geiger XJ, Wasiluk A, Heidet L, Kitching AR, Borza DB. Proteolysis breaks tolerance toward Intact α345 (IV) collagen, eliciting novel anti–glomerular basement membrane autoantibodies specific for α345NC1 hexamers. The Journal of Immunology. 2013 Feb 15;190(4):1424-32.
  19. Pedchenko, V., Kitching, A. R., & Hudson, B. G. (2018). Goodpast’re’s autoimmune disease—A collagen IV disorder. Matrix Biology, 71, 240-249.
  20. Watroly, M. N., Sekar, M., Fuloria, S., Gan, S. H., Jeyabalan, S., Wu, Y. S., … & Fuloria, N. K. (2021). Chemistry, biosynthesis, physicochemical and biological properties of rubiadin: A promising natural anthraquinone for new drug discovery and development. Drug design, development and therapy, 4527-4549.
  21. Shiferaw, B., Miro, V., Smith, C., Akella, J., Chua, W., & Kim, Z. (2016). Goodpasture’s disease: an uncommon disease with an atypical clinical course. Journal of Clinical Medicine Research, 8(1), 52.
  22. Chen, A., Liu, Y., Lu, Y., Lee, K., & He, J. C. (2021). Disparate roles of retinoid acid signaling molecules in kidney disease. American Journal of Physiology-Renal Physiology, 320(5), F683-F692.
  23. Takano, Y., Yamauchi, K., Hayakawa, K., Hiramatsu, N., Kasai, A., Okamura, M., … & Kitamura, M. (2007). Transcriptional suppression of nephrin in podocytes by macrophages: roles of inflammatory cytokines and involvement of the PI3K/Akt pathway. FEBS letters, 581(3), 421-426.
  24. Chafin, C., Muse, S., Hontecillas, R., Bassaganya-Riera, J., Caudell, D. L., Shimp III, S. K., … & Reilly, C. M. (2010). Deletion of PPAR-γ in immune cells enhances susceptibility to antiglomerular basement membrane disease. Journal of inflammation research, 127-134.
  25. Alves-Fernandes, D. K., & Jasiulionis, M. G. (2019). The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. International journal of molecular sciences, 20(13), 3153.
  26. Fanali, G., Di Masi, A., Trezza, V., Marino, M., Fasano, M., & Ascenzi, P. (2012). Human serum albumin: from bench to bedside. Molecular aspects of medicine, 33(3), 209-290.
  27. Lu, Z., Wang, F., & Liang, M. (2017). SerpinC1/Antithrombin III in kidney-related diseases. Clinical Science, 131(9), 823-831.
  28. Ritz, E., Adamczak, M., Wiecek, A., Kopple, J. D., Massry, S. G., & Kalantar-Zadeh, K. (2013). Carbohydrate metabolism in kidney disease and kidney failure (pp. 17-30). Amsterdam: Academic Press.
  29. Andrighetto, S., Leventhal, J., Zaza, G., & Cravedi, P. (2019). Complement and complement targeting therapies in glomerular diseases. International Journal of Molecular Sciences, 20(24), 6336.

Regular Issue Subscription Original Research
Volume 01
Issue 01
Received March 2, 2023
Accepted March 14, 2023
Published April 24, 2023