Extrapolations of Periwinkle Secondary Metabolites as Multitarget Inhibitor of Breast Cancer Proteins

[{“box”:0,”content”:”

n

Year : May 5, 2023 | Volume : 01 | Issue : 01 | Page : 36-49

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Aparna Prasad

  1. [/foreach]

    n

n

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Student, Department of Biotechnology, Mumbai University, Pillai College of Arts Commerce and Science, Maharashtra, India
  2. n[/if 1175][/foreach]

n

n

Abstract

nObjective: Breast cancer is considered one of the most common and dangerous forms of cancer. It is a significant public health issue on a global scale. The study estimates that 10.0 million people will die from cancer this year, and 19.3 million people will develop the disease overall (BC). In this computation approach nowadays emphasises for new drug discovery, the target protein EGFR (5UGB), ER (2QGT), and PI3KA (4OYS) were chosen to perform molecular docking against the derivatives of periwinkle Catharanthus phytochemical and FDA approved drugs. Its pharmacological characteristics and its therapeutic analysis were investigated.
Methods: The study was based on a computational approach using different phytocompounds for evaluation of their inhibitory potential against the target proteins EGFR, ER, and PI3KA. The protein molecular docking was conducted systematically using IMPAAT, PubChem, PDB, Open Bable, BIOVIA Discovery Studio Visualizer, PDB sum generate, PyRx and ADMETlab 2.0.
Result: The docking result revealed that the ligands selected have the best binding affinity with all the three target proteins.
Conclusion: The ligands could potentially be used to treat breast cancer in the future approaches for studying the urge ligands in vitro and in vivo analysis in order to create novel breast cancer inhibitors.

n

n

n

Keywords: Breast cancer, Catharanthus, periwinkle, EGFR, ER, PI3KA, vindolininol, lochnericine, lochnerinine, molecular docking, ADMET.

n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Biochemistry and Biomolecules(ijbb)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in International Journal of Biochemistry and Biomolecules(ijbb)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Aparna Prasad Extrapolations of Periwinkle Secondary Metabolites as Multitarget Inhibitor of Breast Cancer Proteins ijbb May 5, 2023; 01:36-49

n

How to cite this URL: Aparna Prasad Extrapolations of Periwinkle Secondary Metabolites as Multitarget Inhibitor of Breast Cancer Proteins ijbb May 5, 2023 {cited May 5, 2023};01:36-49. Available from: https://journals.stmjournals.com/ijbb/article=May 5, 2023/view=0/

nn


nn[if 992 equals=”Open Access”] Full Text PDF[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘Full Text PDF‘);n }nelse if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }nelse if (fieldValue == ‘ijbb’) { document.write(‘Full Text PDF‘); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]nn

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249.
  2. Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., & Sharma, K. (2010). Various types and management of breast cancer: an overview. Journal of advanced pharmaceutical technology & research, 1(2), 109.
  3. Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., & Sharma, K. (2010). Various types and management of breast cancer: an overview. Journal of advanced pharmaceutical technology & research, 1(2), 109.
  4. Momenimovahed, Z., & Salehiniya, H. (2019). Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer: Targets and Therapy, 11, 151.
  5. Singletary, S. E. (2003). Rating the risk factors for breast cancer. Annals of surgery, 237(4), 474.
  6. Nakai, K., Hung, M. C., & Yamaguchi, H. (2016). A perspective on anti-EGFR therapies targeting triple-negative breast cancer. American journal of cancer research, 6(8), 1609.
  7. Foley, J., Nickerson, N. K., Nam, S., Allen, K. T., Gilmore, J. L., Nephew, K. P., & Riese II, D. J. (2010, December). EGFR signaling in breast cancer: bad to the bone. In Seminars in cell & developmental biology (Vol. 21, No. 9, pp. 951-960). Academic Press.
  8. Pusztai, L., Ayers, M., Stec, J., Clark, E., Hess, K., Stivers, D., … & Symmans, W. F. (2003). Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clinical Cancer Research, 9(7), 2406-2415.
  9. McGovern, S. L., Qi, Y., Pusztai, L., Symmans, W. F., & Buchholz, T. A. (2012). Centromere protein-A, an essential centromere protein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer. Breast Cancer Research, 14(3), 1-11.
  10. Hilton, J., Weberpals, J., Lorimer, I., Amin, S., Islam, S., Daneshmand, M., … & Verma, S. (2011). Abstract C1: BRCA1 protein levels and PI3KA mutations as predictive biomarkers for response to neoadjuvant chemotherapy in locally advanced breast cancer: An exploratory analysis. Molecular Cancer Therapeutics, 10(11_Supplement), C1-C1.
  11. Gawade, M., Zaware, M., Gaikwad, C., Kumbhar, R., & Chavan, T. Catharanthus roseus L.(Periwinkle): An herb with impressive health benefits & pharmacological therapeutic effects.
  12. Dada, W. P., & Nilima, W. (2021). VINCA ROSEA: AS AN POTENT ANTI-CANCER AGENT.
  13. Das, S., & Sharangi, A. B. (2017). Madagascar periwinkle (Catharanthus roseus L.): Diverse medicinal and therapeutic benefits to humankind. Journal of Pharmacognosy and Phytochemistry, 6(5), 1695-1701.
  14. Ahmed, B., Ashfaq, U. A., ul Qamar, M. T., & Ahmad, M. (2014). Anti-cancer potential of phytochemicals against breast cancer: Molecular docking and simulation approach. ||| Bangladesh Journal of Pharmacology|||, 9(4), 545-50.
  15. Giaquinto, A. N., Sung, H., Miller, K. D., Kramer, J. L., Newman, L. A., Minihan, A., … & Siegel, R. L. (2022). Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72(6), 524-541.
  16. Acharya, R., Chacko, S., Bose, P., Lapenna, A., & Pattanayak, S. P. (2019). Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Scientific reports, 9(1), 1-13.
  17. Yang, Y., Tao, R., Shu, X., Cai, Q., Wen, W., Gu, K., … & Zheng, W. (2022). Incorporating polygenic risk scores and nongenetic risk factors for breast cancer risk prediction among Asian women. JAMA network open, 5(3), e2149030-e2149030.
  18. Williams, S. D., Smith, T. M., Stewart, L. V., & Sakwe, A. M. (2022). Hypoxia-Inducible Expression of Annexin A6 Enhances the Resistance of Triple-Negative Breast Cancer Cells to EGFR and AR Antagonists. Cells, 11(19), 3007.
  19. Hossein-Nejad-Ariani, H., Althagafi, E., & Kaur, K. (2019). Small peptide ligands for targeting EGFR in triple negative breast cancer cells. Scientific reports, 9(1), 1-10.
  20. Ma, S., Tang, T., Probst, G., Konradi, A., Jin, C., Li, F., … & Guan, K. L. (2022). Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER+ breast cancer. Nature communications, 13(1), 1-17.
  21. Araki, K., & Miyoshi, Y. (2018). Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast cancer, 25(4), 392-401.
  22. Akinnusi, P. A., Olubode, S. O., Adebesin, A. O., Nana, T. A., & Shodehinde, S. A. (2022). Discovery of Promising Inhibitors of Epidermal Growth Factor Receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2), Estrogen Receptor (ER), and Phosphatidylinositol-3-kinase a (PI3Ka) for Personalized Breast Cancer Treatment. Cancer Informatics, 21, 11769351221127862.
  23. Vernieri, C., Corti, F., Nichetti, F., Ligorio, F., Manglaviti, S., Zattarin, E., … & de Braud, F. (2020). Everolimus versus alpelisib in advanced hormone receptor-positive HER2-negative breast cancer: targeting different nodes of the PI3K/AKT/mTORC1 pathway with different clinical implications. Breast Cancer Research, 22(1), 1-13.
  24. Fraschini, G., Yap, H. Y., Hortobagyi, G. N., Buzdar, A., & Blumenschein, G. (1985). Five‐day continuous‐infusion vinblastine in the treatment of breast cancer. Cancer, 56(2), 225-229.
  25. Sathiya, S., Karthikeyan, B., Jaleel, C. A., Azooz, M. M., & Iqbal, M. (2008). Antibiogram of Catharanthus roseus extracts. Global J Mol Sci, 3(1), 01-07.
  26. Nabholtz, J. M., Senn, H. J., Bezwoda, W. R., Melnychuk, D., Deschenes, L., Douma, J., … & Aapro, M. (1999). Prospective randomized trial of docetaxel versus mitomycin plus vinblastine in patients with metastatic breast cancer progressing despite previous anthracycline-containing chemotherapy. Journal of Clinical Oncology, 17(5), 1413-1413.
  27. Shah, A., Bloomquist, E., Tang, S., Fu, W., Bi, Y., Liu, Q., … & Pazdur, R. (2018). FDA Approval: Ribociclib for the Treatment of Postmenopausal Women with Hormone Receptor–Positive, HER2-Negative Advanced or Metastatic Breast CancerRibociclib for HR+ HER2− Metastatic Breast Cancer. Clinical Cancer Research, 24(13), 2999-3004.

 

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

Regular Issue Subscription Original Research

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 01
Issue 01
Received April 13, 2023
Accepted April 17, 2023
Published May 5, 2023

n

n

n

[if 1190 not_equal=””]n

Editor

n

[foreach 1188]n

n[/foreach]

n[/if 1190] [if 1177 not_equal=””]n

Reviewer

n

[foreach 1176]n

n[/foreach]

n[/if 1177]

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n n function myfun() {n x = document.getElementById(“editor”);n y = document.getElementById(“down”);n z = document.getElementById(“up”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n function myfun2() {n x = document.getElementById(“reviewer”);n y = document.getElementById(“down2”);n z = document.getElementById(“up2”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n”}]