Organometallic Osmium Compounds in Cancer Therapy

Year : 2024 | Volume :01 | Issue : 02 | Page : 01-25
By

A. Mohamed Sikkander

Rajeev Ranjan

A. Mohamed Sikkander

  1. Associate Professor and Head Department of Chemistry, Velammal Engineering College Chennai India
  2. Assistant Professor Department of Chemistry, DSPM University Jharkhand India
  3. Associate professo Department of Electronics & Telecommunication, Thakur College of Engineering Maharashtra

Abstract

The exploration of organometallic complexes with osmium as potential anticancer agents was indeed an area of ongoing research. These complexes were being investigated for their unique properties and mechanisms of action against cancer cells. However, it’s essential to note that the field of scientific research is dynamic, and new findings may have emerged since then. Organometallic complexes with osmium can be designed to exhibit specific features that make them promising candidates for anticancer applications. These features may include the ability to interact with cellular components, induce DNA damage, or modulate specific pathways crucial for cancer cell survival. To get the most current and accurate information on the latest developments in this field, I recommend checking recent scientific literature, research articles, and updates from reputable sources. Researchers often publish their findings in peer-reviewed journals, and these publications provide valuable insights into the progress of studies involving osmium-based organometallic complexes in cancer research and treatment. KP1339, also known as tetrachloride (dimethyl sulfoxide) (1H-indazole) ruthenate (III), is an osmium (III) compound that has been studied for its potential anticancer properties. It belongs to the class of organometallic compounds and has been investigated for its ability to induce cancer cell death and inhibit tumor growth. Osmium (II) arene complexes are a class of organometallic compounds that involve osmium in the +2-oxidation state coordinated with arene ligands. The structural characteristics and coordination environment of osmium (II) arene complexes make them interesting subjects of study for their potential applications, particularly in the field of medicinal chemistry and cancer research.

Keywords: Osmium (II) arene complexes, Osmium (III) compound, Cellular proteins, Induction of oxidative stress, Cancer cell replication

[This article belongs to International Journal of Advance in Molecular Engineering(ijame)]

How to cite this article: A. Mohamed Sikkander, Rajeev Ranjan, A. Mohamed Sikkander. Organometallic Osmium Compounds in Cancer Therapy. International Journal of Advance in Molecular Engineering. 2024; 01(02):01-25.
How to cite this URL: A. Mohamed Sikkander, Rajeev Ranjan, A. Mohamed Sikkander. Organometallic Osmium Compounds in Cancer Therapy. International Journal of Advance in Molecular Engineering. 2024; 01(02):01-25. Available from: https://journals.stmjournals.com/ijame/article=2024/view=144940

References

  1. Johnstone TC, Suntharalingam K, Lippard SJ. Third row transition metals for the treatment of cancer. Philos Trans A Math Phys Eng Sci. 2015 Mar 13;373(2037):20140185. doi: 10.1098/rsta.2014.0185. PMID: 25666060; PMCID: PMC4342973.
  2. Bruijnincx PC, Sadler PJ. Controlling Platinum, Ruthenium and Osmium Reactivity for Anticancer Drug Design. Adv Inorg Chem. 2009 Jul 7;61:1-62. doi: 10.1016/S0898-8838(09)00201-3. PMID: 21258628; PMCID: PMC3024542.
  3. van Rijt SH, Romero-Canelón I, Fu Y, Shnyder SD, Sadler PJ. Potent organometallic osmium compounds induce mitochondria-mediated apoptosis and S-phase cell cycle arrest in A549 non-small cell lung cancer cells. Metallomics. 2014 May;6(5):1014-22. doi: 10.1039/c4mt00034j. PMID: 24668459.
  4. Florea, A.-M.; Büsselberg, D. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers 2011, 3, 1351-1371. https://doi.org/10.3390/cancers3011351
  5. Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Dou, Q.P. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des. 2010, 16, 1813–1825.
  6. Aoki K, Murayama K. Nucleic acid-metal ion interactions in the solid state. Met Ions Life Sci. 2012; 10:43-102. doi: 10.1007/978-94-007-2172-2_2. PMID: 22210335.
  7. Desoize B, Madoulet C. Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol Hematol. 2002 Jun;42(3):317-25. doi: 10.1016/s1040-8428(01)00219-0. PMID: 12050023.
  8. Che CM, Siu FM. Metal complexes in medicine with a focus on enzyme inhibition. Curr Opin Chem Biol. 2010 Apr;14(2):255-61. doi: 10.1016/j.cbpa.2009.11.015. Epub 2009 Dec 16. PMID: 20018553.
  9. Chen D, Milacic V, Frezza M, Dou QP. Metal complexes, their cellular targets and potential for cancer therapy. Curr Pharm Des. 2009;15(7):777-91. doi: 10.2174/138161209787582183. PMID: 19275642.
  10. Zhang J, Wang L, Xing Z, Liu D, Sun J, Li X, Zhang Y. Status of bi- and multi-nuclear platinum anticancer drug development. Anticancer Agents Med Chem. 2010 May;10(4):272-82. doi: 10.2174/187152010791162270. PMID: 20184553.
  11. Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer. 1998 Sep;34(10):1522-34. doi: 10.1016/s0959-8049(98)00224-x. PMID: 9893623.
  12. Olszewski U, Hamilton G. A better platinum-based anticancer drug yet to come? Anticancer Agents Med Chem. 2010 May;10(4):293-301. doi: 10.2174/187152010791162306. PMID: 20187870.
  13. Shah N, Dizon DS. New-generation platinum agents for solid tumors. Future Oncol. 2009 Feb;5(1):33-42. doi: 10.2217/14796694.5.1.33. PMID: 19243296.
  14. Günes DA, Florea AM, Splettstoesser F, Büsselberg D. Co-application of arsenic trioxide (As2O3) and cisplatin (CDDP) on human SY-5Y neuroblastoma cells has differential effects on the intracellular calcium concentration ([Ca2+]i) and cytotoxicity. Neurotoxicology. 2009 Mar;30(2):194-202. doi: 10.1016/j.neuro.2008.12.001. Epub 2008 Dec 11. PMID: 19118571.
  15. Tsang RY, Al-Fayea T, Au HJ. Cisplatin overdose: toxicities and management. Drug Saf. 2009;32(12):1109-22. doi: 10.2165/11316640-000000000-00000. PMID: 19916578.
  16. Knoll C, Smith RJ, Shores C, Blatt J. Hearing genes and cisplatin deafness: a pilot study. Laryngoscope. 2006 Jan;116(1):72-4. doi: 10.1097/01.mlg.0000185596. 20207.d2. PMID: 16481813.
  17. Rademaker-Lakhai JM, Crul M, Zuur L, Baas P, Beijnen JH, Simis YJ, van Zandwijk N, Schellens JH. Relationship between cisplatin administration and the development of ototoxicity. J Clin Oncol. 2006 Feb 20;24(6):918-24. doi: 10.1200/JCO.2006.10.077. PMID: 16484702.
  18. Drottar M, Liberman MC, Ratan RR, Roberson DW. The histone deacetylase inhibitor sodium butyrate protects against cisplatin-induced hearing loss in guinea pigs. Laryngoscope. 2006 Feb;116(2):292-6. doi: 10.1097/01.mlg.0000197630.85208.36. PMID: 16467722; PMCID: PMC2570099.
  19. Momekov G, Ferdinandov D, Bakalova A, Zaharieva M, Konstantinov S, Karaivanova M. In vitro toxicological evaluation of a dinuclear platinum(II) complex with acetate ligands. Arch Toxicol. 2006 Sep;80(9):555-60. doi: 10.1007/s00204-006-0078-0. Epub 2006 Feb 17. PMID: 16485120.
  20. Liu M, Chien CC, Burne-Taney M, Molls RR, Racusen LC, Colvin RB, Rabb H. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J Am Soc Nephrol. 2006 Mar;17(3):765-74. doi: 10.1681/ASN.2005010102. Epub 2006 Feb 15. PMID: 16481417.
  21. Masubuchi Y, Kawasaki M, Horie T. Down-regulation of hepatic cytochrome P450 enzymes associated with cisplatin-induced acute renal failure in male rats. Arch Toxicol. 2006 Jun;80(6):347-53. doi: 10.1007/s00204-006-0079-z. Epub 2006 Feb 17. PMID: 16485119.
  22. Ralph SJ, Neuzil J. Mitochondria as targets for cancer therapy. Mol Nutr Food Res. 2009 Jan;53(1):9-28. doi: 10.1002/mnfr.200800044. PMID: 19123183.
  23. Brozovic A, Ambriović-Ristov A, Osmak M. The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol. 2010 Apr;40(4):347-59. doi: 10.3109/10408441003601836. PMID: 20163198.
  24. Desoize B. Cancer and metals and metal compounds: part I–carcinogenesis. Crit Rev Oncol Hematol. 2002 Apr;42(1):1-3. doi: 10.1016/s1040-8428(02)00017-3. PMID: 11923064.
  25. Jordan P, Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci. 2000 Aug;57(8-9):1229-35. doi: 10.1007/pl00000762. PMID: 11028915.
  26. Sedletska Y, Giraud-Panis MJ, Malinge JM. Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Curr Med Chem Anticancer Agents. 2005 May;5(3):251-65. doi: 10.2174/1568011053765967. PMID: 15992353.
  27. Chaney SG, Campbell SL, Bassett E, Wu Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev Oncol Hematol. 2005 Jan;53(1):3-11. doi: 10.1016/j.critrevonc.2004.08.008. PMID: 15607931.
  28. Schär P, Fäsi M, Jessberger R. SMC1 coordinates DNA double-strand break repair pathways. Nucleic Acids Res. 2004 Jul 27;32(13):3921-9. doi: 10.1093/nar/gkh716. PMID: 15280507; PMCID: PMC506803.
  29. Brabec V, Kasparkova J. Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat. 2005 Jun;8(3):131-46. doi: 10.1016/j.drup.2005.04.006. PMID: 15894512.
  30. Kim, J.H., Reeder, E., Parkin, S. et al. Gold(I/III)-Phosphine Complexes as Potent Antiproliferative Agents. Sci Rep 9, 12335 (2019). https://doi.org/10.1038/s41598-019-48584-5
  31. Gasser G, Ott I, Metzler-Nolte N. Organometallic anticancer compounds. J Med Chem. 2011 Jan 13;54(1):3-25. doi: 10.1021/jm100020w. Epub 2010 Nov 15. PMID: 21077686; PMCID: PMC3018145.
  32. Frei, A., Verderosa, A.D., Elliott, A.G. et al. Metals to combat antimicrobial resistance. Nat Rev Chem 7, 202–224 (2023). https://doi.org/10.1038/s41570-023-00463-4
  33. Berndsen RH, Weiss A, Abdul UK, Wong TJ, Meraldi P, Griffioen AW, Dyson PJ, Nowak-Sliwinska P. Combination of ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Sci Rep. 2017 Feb 22;7:43005. doi: 10.1038/srep43005. PMID: 28223694; PMCID: PMC5320450.
  34. Christian G. Hartinger, Stefanie Zorbas-Seifried, Michael A. Jakupec, Bernd Kynast, Haralabos Zorbas, Bernhard K. Keppler,From bench to bedside – preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A),Journal of Inorganic Biochemistry,Volume 100, Issues 5–6,2006,Pages 891-904,ISSN 0162-0134, https://doi.org/10.1016/j.jinorgbio.2006.02.013
  35. Wernitznig D, Kiakos K, Del Favero G, Harrer N, Machat H, Osswald A, Jakupec MA, Wernitznig A, Sommergruber W, Keppler BK. First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids in vitro. Metallomics. 2019 Jun 19;11(6):1044-1048. doi: 10.1039/c9mt00051h. PMID: 30942231.
  36. Alessio E, Messori L. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Molecules. 2019 May 24;24(10):1995. doi: 10.3390/molecules24101995. PMID: 31137659; PMCID: PMC6571951.
  37. Heffeter P, Atil B, Kryeziu K, Groza D, Koellensperger G, Körner W, Jungwirth U, Mohr T, Keppler BK, Berger W. The ruthenium compound KP1339 potentiates the anticancer activity of sorafenib in vitro and in vivo. Eur J Cancer. 2013 Oct;49(15):3366-75. doi: 10.1016/j.ejca.2013.05.018. Epub 2013 Jun 18. PMID: 23790465; PMCID: PMC3807657.
  38. Flocke, L.S., Trondl, R., Jakupec, M.A. et al. Molecular mode of action of NKP-1339 – a clinically investigated ruthenium-based drug – involves ER- and ROS-related effects in colon carcinoma cell lines. Invest New Drugs 34, 261–268 (2016). https://doi.org/10.1007/s10637-016-0337-8
  39. Dhyani, P., Quispe, C., Sharma, E. et al. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int 22, 206 (2022). https://doi.org/10.1186/s12935-022-02624-9
  40. Xu X, Dai F, Mao Y, Zhang K, Qin Y, Zheng J. Metallodrugs in the battle against non-small cell lung cancer: unlocking the potential for improved therapeutic outcomes. Front Pharmacol. 2023 Aug 31;14:1242488. doi: 10.3389/fphar.2023.1242488. PMID: 37727388; PMCID: PMC10506097.
  41. Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci. 2020 Nov 12;11(48):12888-12917. doi: 10.1039/d0sc04082g. PMID: 34123239; PMCID: PMC8163330.
  42. Asperti, M., Cantamessa, L., Gryzik, M. et al. The modulation of iron metabolism affects the Rhabdomyosarcoma tumor growth in vitro and in vivo. Clin Exp Med 23, 2487–2502 (2023). https://doi.org/10.1007/s10238-023-01012-5
  43. Bergamo A., Sava G. (2011). Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans. 40 (31), 7817–7823. 10.1039/c0dt01816c
  44. Cui, X.Y.; Park, S.H.; Park, W.H. Anti-Cancer Effects of Auranofin in Human Lung Cancer Cells by Increasing Intracellular ROS Levels and Depleting GSH Levels. Molecules 2022, 27, 5207. https://doi.org/10.3390/molecules27165207
  45. Delgobo M, Gonçalves RM, Delazeri MA, Falchetti M, Zandoná A, Nascimento das Neves R, Almeida K, Fagundes AC, Gelain DP, Fracasso JI, Macêdo GB, Priori L, Bassani N, Bishop AJR, Forcelini CM, Moreira JCF, Zanotto-Filho A. Thioredoxin reductase-1 levels are associated with NRF2 pathway activation and tumor recurrence in non-small cell lung cancer. Free Radic Biol Med. 2021 Dec;177:58-71. doi: 10.1016/j.freeradbiomed.2021.10.020. Epub 2021 Oct 19. PMID: 34673143.
  46. Dwyer BG, Johnson E, Cazares E, McFarlane Holman KL, Kirk SR. Ruthenium anticancer agent KP1019 binds more tightly than NAMI-A to tRNAPhe. J Inorg Biochem. 2018 May;182:177-183. doi: 10.1016/j.jinorgbio.2018.02.019. Epub 2018 Feb 24. PMID: 29501978.
  47. Elie BT, Pechenyy Y, Uddin F, Contel M. A heterometallic ruthenium-gold complex displays antiproliferative, antimigratory, and antiangiogenic properties and inhibits metastasis and angiogenesis-associated proteases in renal cancer. J Biol Inorg Chem. 2018 May;23(3):399-411. doi: 10.1007/s00775-018-1546-8. Epub 2018 Mar 5. PMID: 29508136; PMCID: PMC6173830.
  48. Figueroa-DePaz, Y.; Pérez-Villanueva, J.; Soria-Arteche, O.; Martínez-Otero, D.; Gómez-Vidales, V.; Ortiz-Frade, L.; Ruiz-Azuara, L. Casiopeinas of Third Generations: Synthesis, Characterization, Cytotoxic Activity and Structure–Activity Relationships of Mixed Chelate Compounds with Bioactive Secondary Ligands. Molecules 2022, 27, 3504. https://doi.org/10.3390/molecules27113504
  49. Guzmán-Méndez Ó, González F, Bernès S, Flores-Álamo M, Ordóñez-Hernández J, García-Ortega H, Guerrero J, Qian W, Aliaga-Alcalde N, Gasque L. Coumarin Derivative Directly Coordinated to Lanthanides Acts as an Excellent Antenna for UV-Vis and Near-IR Emission. Inorg Chem. 2018 Feb 5;57(3):908-911. doi: 10.1021/acs.inorgchem.7b02861. Epub 2018 Jan 8. PMID: 29308891.
  50. Annaraj J, Srinivasan S, Ponvel KM, Athappan P. Mixed ligand copper(II) complexes of phenanthroline/bipyridyl and curcumin diketimines as DNA intercalators and their electrochemical behavior under Nafion and clay modified electrodes. J Inorg Biochem. 2005 Mar;99(3):669-76. doi: 10.1016/j.jinorgbio.2004.11.018. Epub 2005 Jan 1. PMID: 15708787.
  51. Heffeter P, Atil B, Kryeziu K, Groza D, Koellensperger G, Körner W, Jungwirth U, Mohr T, Keppler BK, Berger W. The ruthenium compound KP1339 potentiates the anticancer activity of sorafenib in vitro and in vivo. Eur J Cancer. 2013 Oct;49(15):3366-75. doi: 10.1016/j.ejca.2013.05.018. Epub 2013 Jun 18. PMID: 23790465; PMCID: PMC3807657.
  52. Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics. 2017 Oct 14;9(4):46. doi: 10.3390/pharmaceutics9040046. PMID: 29036899; PMCID: PMC5750652.
  53. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30. doi: 10.3322/caac.21332. Epub 2016 Jan 7. PMID: 26742998.
  54. Weinstein, I., Joe, A. Mechanisms of Disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Rev Clin Oncol 3, 448–457 (2006). https://doi.org/10.1038/ncponc0558
  55. Ji W, Sun B, Su C. Targeting MicroRNAs in Cancer Gene Therapy. Genes (Basel). 2017 Jan 9;8(1):21. doi: 10.3390/genes8010021. PMID: 28075356; PMCID: PMC5295016.
  56. Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. 2015 Apr;21(4):223-32. doi: 10.1016/j.molmed.2015.01.001. Epub 2015 Feb 2. PMID: 25656384; PMCID: PMC4385479.
  57. Sudhakar A. History of Cancer, Ancient and Modern Treatment Methods. J Cancer Sci Ther. 2009 Dec 1;1(2):1-4. doi: 10.4172/1948-5956.100000e2. PMID: 20740081.
  58. Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol. 2018 Apr;233(4):2982-2992. doi: 10.1002/jcp.26051. Epub 2017 Aug 23. PMID: 28608554.
  59. Kydd, J.; Jadia, R.; Velpurisiva, P.; Gad, A.; Paliwal, S.; Rai, P. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics 2017, 9, 46. https://doi.org/10.3390/pharmaceutics9040046
  60. Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev. 2018 May;130:17-38. doi: 10.1016/j.addr.2018.07.007. Epub 2018 Jul 19. PMID: 30009886; PMCID: PMC6130746.
  61. Ertas, Y.N.; Abedi Dorcheh, K.; Akbari, A.; Jabbari, E. Nanoparticles for Targeted Drug Delivery to Cancer Stem Cells: A Review of Recent Advances. Nanomaterials 2021, 11, 1755. https://doi.org/10.3390/nano11071755
  62. Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017 Jun 21;46(12):3830-3852. doi: 10.1039/c6cs00592f. Epub 2017 May 18. PMID: 28516983; PMCID: PMC5521825.
  63. Swain S, Sahu PK, Beg S, Babu SM. Nanoparticles for Cancer Targeting: Current and Future Directions. Curr Drug Deliv. 2016;13(8):1290-1302. doi: 10.2174/1567201813666160713121122. PMID: 27411485.
  64. Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, Kabanov AV. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials. 2017 Oct;142:1-12. doi: 10.1016/j.biomaterials.2017.07.011. Epub 2017 Jul 10. PMID: 28715655; PMCID: PMC5603188.
  65. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017 Jun;38(6):754-763. doi: 10.1038/aps.2017.12. Epub 2017 Apr 10. PMID: 28392567; PMCID: PMC5520184.
  66. Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses. Int J Mol Sci. 2016 Aug 31;17(9):1440. doi: 10.3390/ijms17091440. PMID: 27589733; PMCID: PMC5037719.
  67. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, Ladwa R, O’Byrne K, Kulasinghe A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol. 2022 Apr 24;29(5):3044-3060. doi: 10.3390/curroncol29050247. PMID: 35621637; PMCID: PMC9139602.
  68. Boros E, Dyson PJ, Gasser G. Classification of Metal-based Drugs According to Their Mechanisms of Action. Chem. 2020 Jan;6(1):41-60. DOI: 10.1016/j.chempr.2019.10.013. PMID: 32864503; PMCID: PMC7451962.
  69. Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson PJ, Keppler BK. KP1019, a new redox-active anticancer agent–preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers. 2008 Oct;5(10):2140-2155. doi: 10.1002/cbdv.200890195. PMID: 18972504.
  70. Savic, Maja, Milovanovic, Marija, Stankovic, Vesna, Mihajlovic, Katarina, Turnic, Tamara Nikolic, Simovic, Ana Rilak, Arsenijevic, Nebojsa and Jakovljevic, Vladimir. “The Antitumor and Toxicity Effects of Ruthenium(II) Complexes on Heterotopic Murine Colon Carcinoma Model” Experimental and Applied Biomedical Research (EABR), vol.0, no.0, 2022, pp.-. https://doi.org/10.2478/sjecr-2022-0028
  71. Mestroni G, Alessio E, Sava G, Pacor S, Coluccia M, Boccarelli A. Water-Soluble Ruthenium(III)-Dimethyl Sulfoxide Complexes: Chemical Behaviour and Pharmaceutical Properties. Met Based Drugs. 1994;1(1):41-63. doi: 10.1155/MBD.1994.41. PMID: 18476216; PMCID: PMC2364872.
  72. Ravera M, Bagni G, Mascini M, Osella D. DNA-metallodrugs interactions signaled by electrochemical biosensors: an overview. Bioinorg Chem Appl. 2007;2007:91078. doi: 10.1155/2007/91078. PMID: 18354727; PMCID: PMC2266972.
  73. Qin QP, Wang ZF, Huang XL, Tan MX, Shi BB, Liang H. High in Vitro and in Vivo Tumor-Selective Novel Ruthenium(II) Complexes with 3-(2′-Benzimidazolyl)-7-fluoro-coumarin. ACS Med Chem Lett. 2019 May 22;10(6):936-940. doi: 10.1021/acsmedchemlett.9b00098. PMID: 31223451; PMCID: PMC6580534.
  74. Zhang, X., Cheng, L., Lu, Y. et al. A MXene-Based Bionic Cascaded-Enzyme Nanoreactor for Tumor Phototherapy/Enzyme Dynamic Therapy and Hypoxia-Activated Chemotherapy. Nano-Micro Lett. 14, 22 (2022). https://doi.org/10.1007/s40820-021-00761-w
  75. Sava G, Bergamo A. Ruthenium-based compounds and tumour growth control (review). Int J Oncol. 2000 Aug;17(2):353-65. doi: 10.3892/ijo.17.2.353. PMID: 10891547.
  76. Tomiris Nabiyeva, Christoph Marschner, Burgert Blom,Synthesis, structure and anti-cancer activity of osmium complexes bearing π-bound arene substituents and phosphane Co-Ligands: A review,European Journal of Medicinal Chemistry,Volume 201,2020,112483,ISSN 0223-5234, https://doi.org/10.1016/j.ejmech.2020.112483
  77. Mohs RC, Greig NH. Drug discovery and development: Role of basic biological research. Alzheimers Dement (N Y). 2017 Nov 11;3(4):651-657. doi: 10.1016/j.trci.2017.10.005. PMID: 29255791; PMCID: PMC5725284.
  78. DiMasi JA, Feldman L, Seckler A, Wilson A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010 Mar;87(3):272-7. doi: 10.1038/clpt.2009.295. Epub 2010 Feb 3. PMID: 20130567.
  79. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010 Mar;9(3):203-14. doi: 10.1038/nrd3078. Epub 2010 Feb 19. PMID: 20168317.

80.Cummings, J.L., Morstorf, T. & Zhong, K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alz Res Therapy 6, 37 (2014). https://doi.org/10.1186/alzrt269

  1. Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. https://doi.org/10.3390/molecules25245789
  2. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014 Jun;13(6):419-31. doi: 10.1038/nrd4309. Epub 2014 May 16. PMID: 24833294.
  3. Owens PK, Raddad E, Miller JW, Stille JR, Olovich KG, Smith NV, Jones RS, Scherer JC. A decade of innovation in pharmaceutical R&D: the Chorus model. Nat Rev Drug Discov. 2015 Jan;14(1):17-28. doi: 10.1038/nrd4497. Epub 2014 Dec 15. PMID: 25503514.
  4. Drews J. Drug discovery: a historical perspective. Science. 2000 Mar 17;287(5460):1960-4. doi: 10.1126/science.287.5460.1960. PMID: 10720314.
  5. Sams-Dodd F. Target-based drug discovery: is something wrong? Drug Discov Today. 2005 Jan 15;10(2):139-47. doi: 10.1016/S1359-6446(04)03316-1. PMID: 15718163.
  6. Begley, C., Ellis, L. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012). https://doi.org/10.1038/483531a
  7. Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov. 2011 Aug 31;10(9):712. doi: 10.1038/nrd3439-c1. PMID: 21892149.
  8. Chen J, Luo X, Qiu H, Mackey V, Sun L, Ouyang X. Drug discovery and drug marketing with the critical roles of modern administration. Am J Transl Res. 2018 Dec 15;10(12):4302-4312. PMID: 30662672; PMCID: PMC6325519.
  9. Hanif M, Babak MV, Hartinger CG. Development of anticancer agents: wizardry with osmium. Drug Discov Today. 2014 Oct;19(10):1640-8. doi: 10.1016/j.drudis.2014.06.016. Epub 2014 Jun 21. PMID: 24955838.
  10. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles,Rajesh Chakrabarty, Partha Sarathi Mukherjee, and Peter J. Stang,Chemical Reviews 2011 111 (11), 6810-6918 DOI: 10.1021/cr200077m
  11. Hearn JM, Romero-Canelón I, Munro AF, Fu Y, Pizarro AM, Garnett MJ, McDermott U, Carragher NO, Sadler PJ. Potent organo-osmium compound shifts metabolism in epithelial ovarian cancer cells. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3800-5. doi: 10.1073/pnas.1500925112. Epub 2015 Jul 10. PMID: 26162681; PMCID: PMC4517206.
  12. Marzo, T.; La Mendola, D. Strike a Balance: Between Metals and Non-Metals, Metalloids as a Source of Anti-Infective Agents. Inorganics 2021, 9, 46. https://doi.org/10.3390/inorganics9060046
  13. Komeda S, Casini A. Next-generation anticancer metallodrugs. Curr Top Med Chem. 2012;12(3):219-35. doi: 10.2174/156802612799078964. PMID: 22236158.
  14. Muhammad N, Guo Z. Metal-based anticancer chemotherapeutic agents. Curr Opin Chem Biol. 2014 Apr;19:144-53. doi: 10.1016/j.cbpa.2014.02.003. Epub 2014 Mar 5. PMID: 24608084.
  15. Patra M, Gasser G. Organometallic compounds: an opportunity for chemical biology? Chembiochem. 2012 Jun 18;13(9):1232-52. doi: 10.1002/cbic.201200159. Epub 2012 May 22. PMID: 22619182.
  16. Jia S, Wang R, Wu K, Jiang H, Du Z. Elucidation of the Mechanism of Action for Metal Based Anticancer Drugs by Mass Spectrometry-Based Quantitative Proteomics. Molecules. 2019 Feb 6;24(3):581. doi: 10.3390/molecules24030581. PMID: 30736320; PMCID: PMC6384660.
  17. Suntharalingam K, Johnstone TC, Bruno PM, Lin W, Hemann MT, Lippard SJ. Bidentate ligands on osmium(VI) nitrido complexes control intracellular targeting and cell death pathways. J Am Chem Soc. 2013 Sep 25;135(38):14060-3. doi: 10.1021/ja4075375. Epub 2013 Sep 16. PMID: 24041161; PMCID: PMC3791136.
  18. Maillet A, Yadav S, Loo YL, Sachaphibulkij K, Pervaiz S. A novel Osmium-based compound targets the mitochondria and triggers ROS-dependent apoptosis in colon carcinoma. Cell Death Dis. 2013 Jun 6;4(6):e653. doi: 10.1038/cddis.2013.185. PMID: 23744353; PMCID: PMC3698552.
  19. Ni WX, Man WL, Cheung MT, Sun RW, Shu YL, Lam YW, Che CM, Lau TC. Osmium(VI) complexes as a new class of potential anti-cancer agents. Chem Commun (Camb). 2011 Feb 21;47(7):2140-2. doi: 10.1039/c0cc04515b. Epub 2011 Jan 4. PMID: 21203649.
  20. Hildebrandt, J.; Häfner, N.; Kritsch, D.; Görls, H.; Dürst, M.; Runnebaum, I.B.; Weigand, W. Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms. Int. J. Mol. Sci. 2022, 23, 4976. https://doi.org/10.3390/ijms23094976
  21. Romero-Canelón I, Sadler PJ. Next-generation metal anticancer complexes: multitargeting via redox modulation. Inorg Chem. 2013 Nov 4;52(21):12276-91. doi: 10.1021/ic400835n. Epub 2013 Jul 23. PMID: 23879584.
  22. Fu Y, Habtemariam A, Pizarro AM, van Rijt SH, Healey DJ, Cooper PA, Shnyder SD, Clarkson GJ, Sadler PJ. Organometallic osmium arene complexes with potent cancer cell cytotoxicity. J Med Chem. 2010 Nov 25;53(22):8192-6. doi: 10.1021/jm100560f. Epub 2010 Oct 26. PMID: 20977192.
  23. Shnyder SD, et al. Anti-colorectal cancer activity of an organometallic osmium arene azopyridine complex. Med Chem Comm. 2011;2(7):666–668.
  24. Coverdale JPC, Guy CS, Bridgewater HE, Needham RJ, Fullam E, Sadler PJ. Osmium-arene complexes with high potency towards Mycobacterium tuberculosis. Metallomics. 2021 Apr 8;13(4):mfab007. doi: 10.1093/mtomcs/mfab007. PMID: 33693931; PMCID: PMC8026400.
  25. Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene. 2006 Aug 7;25(34):4663-74. doi: 10.1038/sj.onc.1209604. PMID: 16892080.
  26. Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA, Redman MC, Wiltshire E, Wilson CJ, Altshuler D, Gabriel SB, Daly MJ, Thorburn DR, Mootha VK. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet. 2010 Oct;42(10):851-8. doi: 10.1038/ng.659. Epub 2010 Sep 5. PMID: 20818383; PMCID: PMC2977978.
  27. Parrella P, Xiao Y, Fliss M, Sanchez-Cespedes M, Mazzarelli P, Rinaldi M, Nicol T, Gabrielson E, Cuomo C, Cohen D, Pandit S, Spencer M, Rabitti C, Fazio VM, Sidransky D. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res. 2001 Oct 15;61(20):7623-6. PMID: 11606403.
  28. Larman TC, DePalma SR, Hadjipanayis AG; Cancer Genome Atlas Research Network; Protopopov A, Zhang J, Gabriel SB, Chin L, Seidman CE, Kucherlapati R, Seidman JG. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14087-91. doi: 10.1073/pnas.1211502109. Epub 2012 Aug 13. PMID: 22891333; PMCID: PMC3435197.
  29. Guerra F, Perrone AM, Kurelac I, Santini D, Ceccarelli C, Cricca M, Zamagni C, De Iaco P, Gasparre G. Mitochondrial DNA mutation in serous ovarian cancer: implications for mitochondria-coded genes in chemoresistance. J Clin Oncol. 2012 Dec 20;30(36):e373-8. doi: 10.1200/JCO.2012.43.5933. Epub 2012 Nov 13. PMID: 23150702.
  30. Aikhionbare FO, Mehrabi S, Thompson W, Yao X, Grizzle W, Partridge E. mtDNA sequence variants in subtypes of epithelial ovarian cancer stages in relation to ethnic and age difference. Diagn Pathol. 2008 Jul 28;3:32. doi: 10.1186/1746-1596-3-32. PMID: 18662401; PMCID: PMC2494992.
  31. Van Trappen PO, Cullup T, Troke R, Swann D, Shepherd JH, Jacobs IJ, Gayther SA, Mein CA. Somatic mitochondrial DNA mutations in primary and metastatic ovarian cancer. Gynecol Oncol. 2007 Jan;104(1):129-33. doi: 10.1016/j.ygyno.2006.07.010. Epub 2006 Aug 30. PMID: 16942794.
  32. Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells. 2001 Oct;6(10):857-68. doi: 10.1046/j.1365-2443.2001.00469.x. PMID: 11683914.
  33. Zhu M, Li W, Lu C. Role of alpha-synuclein protein levels in mitochondrial morphology and cell survival in cell lines. PLoS One. 2012;7(4):e36377. doi: 10.1371/journal.pone.0036377. Epub 2012 Apr 27. PMID: 22558453; PMCID: PMC3338674.
  34. Menazza S, Blaauw B, Tiepolo T, Toniolo L, Braghetta P, Spolaore B, Reggiani C, Di Lisa F, Bonaldo P, Canton M. Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy. Hum Mol Genet. 2010 Nov 1;19(21):4207-15. doi: 10.1093/hmg/ddq339. Epub 2010 Aug 17. PMID: 20716577.
  35. Devine MJ, Plun-Favreau H, Wood NW. Parkinson’s disease and cancer: two wars, one front. Nat Rev Cancer. 2011 Oct 24;11(11):812-23. doi: 10.1038/nrc3150. PMID: 22020207.
  36. Dalla Pozza E, Fiorini C, Dando I, Menegazzi M, Sgarbossa A, Costanzo C, Palmieri M, Donadelli M. Role of mitochondrial uncoupling protein 2 in cancer cell resistance to gemcitabine. Biochim Biophys Acta. 2012 Oct;1823(10):1856-63. doi: 10.1016/j.bbamcr.2012.06.007. Epub 2012 Jun 15. PMID: 22705884.
  37. Pawlak M, Schick E, Bopp MA, Schneider MJ, Oroszlan P, Ehrat M. Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics. 2002 Apr;2(4):383-93. doi: 10.1002/1615-9861(200204)2:43.0.CO;2-E. PMID: 12164697.
  38. Ashwell S, Zabludoff S. DNA damage detection and repair pathways–recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res. 2008 Jul 1;14(13):4032-7. doi: 10.1158/1078-0432.CCR-07-5138. PMID: 18593978.
  39. Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience. 2019;13:961. doi: 10.3332/ecancer.2019.961. PMID: 31537986; PMCID: PMC6753017.
  40. Unger JM, Cook E, Tai E, Bleyer A. The Role of Clinical Trial Participation in Cancer Research: Barriers, Evidence, and Strategies. Am Soc Clin Oncol Educ Book. 2016;35:185-98. doi: 10.1200/EDBK_156686. PMID: 27249699; PMCID: PMC5495113.
  41. Mühlgassner G, Bartel C, Schmid WF, Jakupec MA, Arion VB, Keppler BK. Biological activity of ruthenium and osmium arene complexes with modified paullones in human cancer cells. J Inorg Biochem. 2012 Nov;116(5):180-7. doi: 10.1016/j.jinorgbio.2012.06.003. Epub 2012 Jun 13. PMID: 23037896; PMCID: PMC3492762.
  42. Gaiddon, C.; Gross, I.; Meng, X.; Sidhoum, M.; Mellitzer, G.; Romain, B.; Delhorme, J.-B.; Venkatasamy, A.; Jung, A.C.; Pfeffer, M. Bypassing the Resistance Mechanisms of the Tumor Ecosystem by Targeting the Endoplasmic Reticulum Stress Pathway Using Ruthenium- and Osmium-Based Organometallic Compounds: An Exciting Long-Term Collaboration with Dr. Michel Pfeffer. Molecules 2021, 26, 5386. https://doi.org/10.3390/molecules26175386
  43. Coverdale JPC, Guy CS, Bridgewater HE, Needham RJ, Fullam E, Sadler PJ. Osmium-arene complexes with high potency towards Mycobacterium tuberculosis. Metallomics. 2021 Apr 8;13(4):mfab007. doi: 10.1093/mtomcs/mfab007. PMID: 33693931; PMCID: PMC8026400.
  44. Nabiyeva T, Roufosse B, Odachowski M, Baumgartner J, Marschner C, Verma AK, Blom B. Osmium Arene Germyl, Stannyl, Germanate, and Stannate Complexes as Anticancer Agents. ACS Omega. 2021 Jul 12;6(29):19252-19268. doi: 10.1021/acsomega.1c02665. PMID: 34337263; PMCID: PMC8320079.
  45. Crochet, P.; Cadierno, V. Arene-Osmium(II) Complexes in Homogeneous Catalysis. Inorganics 2021, 9, 55. https://doi.org/10.3390/inorganics9070055
  46. van Rijt SH, Peacock AF, Johnstone RD, Parsons S, Sadler PJ. Organometallic osmium(II) arene anticancer complexes containing picolinate derivatives. Inorg Chem. 2009 Feb 16;48(4):1753-62. doi: 10.1021/ic8020222. PMID: 19146436.
  47. Giorgi, E.; Binacchi, F.; Marotta, C.; Cirri, D.; Gabbiani, C.; Pratesi, A. Highlights of New Strategies to Increase the Efficacy of Transition Metal Complexes for Cancer Treatments. Molecules 2023, 28, 273. https://doi.org/10.3390/molecules28010273
  48. Dragutan, I.; Dragutan, V.; Demonceau, A. Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules 2015, 20, 17244-17274. https://doi.org/10.3390/molecules200917244
  49. Ma, D.-L.; Wu, C.; Wu, K.-J.; Leung, C.-H. Iridium(III) Complexes Targeting Apoptotic Cell Death in Cancer Cells. Molecules 2019, 24, 2739. https://doi.org/10.3390/molecules24152739
  50. Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules. 2022 Aug 25;27(17):5436. doi: 10.3390/molecules27175436. PMID: 36080203; PMCID: PMC9457551.
  51. Zhu, T., Sha, Y., Yan, J. et al. Metallo-polyelectrolytes as a class of ionic macromolecules for functional materials. Nat Commun 9, 4329 (2018). https://doi.org/10.1038/s41467-018-06475-9
  52. Huang C, Huang W, Ji P, Song F, Liu T, Li M, Guo H, Huang Y, Yu C, Wang C, Ni W. A Pyrazolate Osmium(VI) Nitride Exhibits Anticancer Activity through Modulating Protein Homeostasis in HepG2 Cells. Int J Mol Sci. 2022 Oct 24;23(21):12779. doi: 10.3390/ijms232112779. PMID: 36361570; PMCID: PMC9656236.
  53. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology. 2013 Jul 19;11:26. doi: 10.1186/1477-3155-11-26. PMID: 23870291; PMCID: PMC3720198.
  54. Hildebrandt J, Häfner N, Kritsch D, Görls H, Dürst M, Runnebaum IB, Weigand W. Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms. Int J Mol Sci. 2022 Apr 29;23(9):4976. doi: 10.3390/ijms23094976. PMID: 35563367; PMCID: PMC9102668.
  55. Monro S, Colón KL, Yin H, Roque J 3rd, Konda P, Gujar S, Thummel RP, Lilge L, Cameron CG, McFarland SA. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem Rev. 2019 Jan 23;119(2):797-828. doi: 10.1021/acs.chemrev.8b00211. Epub 2018 Oct 8. PMID: 30295467; PMCID: PMC6453754.
  56. Sonkar C, Sarkar S, Mukhopadhyay S. Ruthenium(ii)-arene complexes as anti-metastatic agents, and related techniques. RSC Med Chem. 2021 Sep 15;13(1):22-38. doi: 10.1039/d1md00220a. PMID: 35224494; PMCID: PMC8792825.
  57. Muralisankar, M.; Chen, J.-R.; Haribabu, J.; Ke, S.-C. Effective and Selective Ru(II)-Arene Complexes Containing 4,4′-Substituted 2,2′ Bipyridine Ligands Targeting Human Urinary Bladder Cancer Cells. Int. J. Mol. Sci. 2023, 24, 11896. https://doi.org/10.3390/ijms241511896
  58. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021 Jan;71(1):7-33. doi: 10.3322/caac.21654. Epub 2021 Jan 12. Erratum in: CA Cancer J Clin. 2021 Jul;71(4):359. PMID: 33433946.
  59. Feldman DR, Bosl GJ, Sheinfeld J, Motzer RJ. Medical treatment of advanced testicular cancer. JAMA. 2008 Feb 13;299(6):672-84. doi: 10.1001/jama.299.6.672. PMID: 18270356.
  60. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014 Oct 5;740:364-78. doi: 10.1016/j.ejphar.2014.07.025. Epub 2014 Jul 21. PMID: 25058905; PMCID: PMC4146684.
  61. Sharma P, Jhawat V, Mathur P, Dutt R. Innovation in cancer therapeutics and regulatory perspectives. Med Oncol. 2022 Feb 23;39(5):76. doi: 10.1007/s12032-022-01677-0. PMID: 35195787; PMCID: PMC8863908.
  62. Waldman, A.D., Fritz, J.M. & Lenardo, M.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20, 651–668 (2020). https://doi.org/10.1038/s41577-020-0306-5
  63. Cervinka J, Gobbo A, Biancalana L, Markova L, Novohradsky V, Guelfi M, Zacchini S, Kasparkova J, Brabec V, Marchetti F. Ruthenium(II)-Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J Med Chem. 2022 Aug 11;65(15):10567-10587. doi: 10.1021/acs.jmedchem.2c00722. Epub 2022 Aug 1. PMID: 35913426; PMCID: PMC9376960.
  64. Qin QP, Wang ZF, Huang XL, Tan MX, Shi BB, Liang H. High in Vitro and in Vivo Tumor-Selective Novel Ruthenium(II) Complexes with 3-(2′-Benzimidazolyl)-7-fluoro-coumarin. ACS Med Chem Lett. 2019 May 22;10(6):936-940. doi: 10.1021/acsmedchemlett.9b00098. PMID: 31223451; PMCID: PMC6580534.
  65. Legina, M.S., Nogueira, J.J., Kandioller, W. et al. Biological evaluation of novel thiomaltol-based organometallic complexes as topoisomerase IIα inhibitors. J Biol Inorg Chem 25, 451–465 (2020). https://doi.org/10.1007/s00775-020-01775-2
  66. Maillet, A., Yadav, S., Loo, Y. et al. A novel Osmium-based compound targets the mitochondria and triggers ROS-dependent apoptosis in colon carcinoma. Cell Death Dis 4, e653 (2013). https://doi.org/10.1038/cddis.2013.185
  67. Domenichini, A., Casari, I., Simpson, P.V. et al. Rhenium N-heterocyclic carbene complexes block growth of aggressive cancers by inhibiting FGFR- and SRC-mediated signalling. J Exp Clin Cancer Res 39, 276 (2020). https://doi.org/10.1186/s13046-020-01777-7
  68. Bridgewater, H.E., Bolitho, E.M., Romero-Canelón, I. et al. Targeting cancer lactate metabolism with synergistic combinations of synthetic catalysts and monocarboxylate transporter inhibitors. J Biol Inorg Chem 28, 345–353 (2023). https://doi.org/10.1007/s00775-023-01994-3
  69. Ma, D.-L.; Wu, C.; Cheng, S.-S.; Lee, F.-W.; Han, Q.-B.; Leung, C.-H. Development of Natural Product-Conjugated Metal Complexes as Cancer Therapies. Int. J. Mol. Sci. 2019, 20, 341. https://doi.org/10.3390/ijms20020341
  70. Huang, Y.; Li, X.; Zhang, Z.; Xiong, L.; Wang, Y.; Wen, Y. Photodynamic Therapy Combined with Ferroptosis Is a Synergistic Antitumor Therapy Strategy. Cancers 2023, 15, 5043. https://doi.org/10.3390/cancers15205043
  71. National Research Council (US) Committee on Prudent Practices in the Laboratory. Prudent Practices in the Laboratory: Handling and Management of Chemical Hazards: Updated Version. Washington (DC): National Academies Press (US); 2011. 4, Evaluating Hazards and Assessing Risks in the Laboratory. Available from: https://www.ncbi.nlm.nih.gov/books/NBK55880/
  72. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci. 2020 Aug 20;7:193. doi: 10.3389/fmolb.2020.00193. PMID: 32974385; PMCID: PMC7468194.
  73. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017 Oct 5;12:7291-7309. doi: 10.2147/IJN.S146315. PMID: 29042776; PMCID: PMC5634382.
  74. Díaz, M.R.; Vivas-Mejia, P.E. Nanoparticles as Drug Delivery Systems in Cancer Medicine: Emphasis on RNAi-Containing Nanoliposomes. Pharmaceuticals 2013, 6, 1361-1380. https://doi.org/10.3390/ph6111361
  75. Cheng, Z., Li, M., Dey, R. et al. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol 14, 85 (2021). https://doi.org/10.1186/s13045-021-01096-0
  76. Cook N, Hansen AR, Siu LL, Abdul Razak AR. Early phase clinical trials to identify optimal dosing and safety. Mol Oncol. 2015 May;9(5):997-1007. doi: 10.1016/j.molonc.2014.07.025. Epub 2014 Aug 14. PMID: 25160636; PMCID: PMC4329110.
  77. Bhatt A. Evolution of clinical research: a history before and beyond james lind. Perspect Clin Res. 2010 Jan;1(1):6-10. PMID: 21829774; PMCID: PMC3149409.
  78. ROSENBERG, B., VAN CAMP, L. & KRIGAS, T. Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature 205, 698–699 (1965). https://doi.org/10.1038/205698a0
  79. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Drug resistance in cancer: an overview. Cancers (Basel). 2014 Sep 5;6(3):1769-92. doi: 10.3390/cancers6031769. PMID: 25198391; PMCID: PMC4190567.
  80. Ruth Nussinov, Chung-Jung Tsai, Hyunbum Jang,Anticancer drug resistance: An update and perspective,Drug Resistance Updates,Volume 59,2021,100796,ISSN 1368-7646, https://doi.org/10.1016/j.drup.2021.100796
  81. Moahamed Sikkander A, Manisankar P , Vedhi C Utilization of sodium montmorillonite clay for enhanced electrochemical sensing of amlodipine,Indian Journal of Chemistry-Section A(IJCA) 55 (5), 571-575DOI: 10.56042/ijca.v55i5.11669
  82. Sivakumar ,R GopalakrishnanP,  Abdul RazakMS,Comparative analysis of anti-reflection coatings on solar PV cells through TiO2 and SiO2 nanoparticles,Pigment & Resin Technology 51 (2), 171-177.https://doi.org/10.1108/PRT-08-2020-0084
  83. Mohamed Sikkander A, Nasri NS., Review on Inorganic Nano crystals unique benchmark of Nanotechnology,Moroccan Journal of Chemistry 1 (2), 1-2 (2013) 47-54.https://doi.org/10.48317/IMIST.PRSM/morjchem-v1i2.1892
  84. Mohamed Sikkander A., Bassyouni  F,  Yasmeen K,  Mishra S.R,  Lakshmi V.V. Synthesis of Zinc Oxide and Lead Nitrate Nanoparticles and their Applications: Comparative Studies of Bacterial and Fungal (E. coli, A. Niger). J. Appl. Organomet. Chem., 2023, 3(4), 255-267. https://doi.org/10.48309/JAOC.2023.415886.1115

Regular Issue Subscription Review Article
Volume 01
Issue 02
Received March 4, 2024
Accepted March 9, 2024
Published April 20, 2024