[{“box”:0,”content”:”
n
n
- n t
n
Baku Agyo Raphael, Bisen Gambo Adashu, Andrew Ishaku Wreford
[/foreach]
n
n
n
- [foreach 286] [if 1175 not_equal=””]n t
- Lecturer, Lecturer, Lecturer, Department of Computer Science, Federal University, Department of Computer Science, Kwararafa University, Department of Computer Science, Federal University, Wukari, Wukari, Wukari, Nigeria, Nigeria, Nigeria
n[/if 1175][/foreach]
n
Abstract
nFraud has posed a significant challenge for merchants, especially in the online business sector, over the course of many years. This is primarily due to the advancements in technology that have made credit card transactions a common method of payment. Credit card fraud refers to the unauthorized use of a credit card by an individual for personal purposes, without the owner’s consent and with no intention of paying for the incurred expenses or engaging in deceptive activities to gain financial advantage. Given the efforts made by fraudsters to disguise their transactions as legitimate, this study introduced an Artificial Neural Network model powered by a machine learning algorithm to identify and detect fraudulent activities in credit card transactions. The researcher effectively filtered and cleanses the dataset sourced from Kaggle machine learning repository selection techniques. The experiment was setup on a 64-bit Windows OS on an Intel (R) Core (TM) i5-3530 QM CPU @ 2.40 GHZ. Python 3.10 via Anaconda environment using Jupiter notebook were used as the integrated development environment. Dataset exploration, reading, scaling and performance evaluation were done successfully. The study result found prediction accuracy of 0.9184 value which is equivalent to 92% at step 716 with 4.6 ms conducted per step and also loss metric based on binary entropy of 2.0%. The study recommended future research and advancement in Artificial Neural Network by hybridising Deep Neutral Network DNN and Relu Neural Network for multi perception optimised performance.
n
Keywords: Entropy, classifier, Credit card-fraud, ANN, Artificial Neural Network,
n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Algorithms Design and Analysis Review(ijadar)]
n
n
n
n
n
nn
nn
Full Text
n[if 992 equals=”Open Access”] [else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(”);n }nelse if (fieldValue == ‘administrator’) { document.write(”); }nelse if (fieldValue == ‘ijadar’) { document.write(”); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]n
Browse Figures
n
n
n[/if 379]n
References
n[if 1104 equals=””]n
1. Bhatla, T. P., Prabhu, V., and Dua, A. (2003). Understanding Credit Card Frauds, Cards business review 1 (6) (2003).
2. Tsai, C. F. (2014). “Combining cluster analysis with classifier ensembles to predict financial distress” Information Fusion, vol. 16, pp. 46–58.
3. Kang, F., Dawei Cheng, Yi Tu, and Liqing Zhang (2016) Credit Card Fraud Detection Using Convolutional Neural Networks. DOI: 10.1007/978-3-319-46675-0 53 483–490, 2016.
4. Deepika, S., and Senthil, S. (2021). Credit card fraud detection using moth-flame earthworm optimization algorithm-based deep belief neural network International Journal of Electronic Security and Digital Forensics, 14(1), 53–75
5. Esenogho, E., Mienye, I. D., Swart, T. G., Aruleba, K., and Obaido, G. (2022). A Neural Network Ensemble with Feature Engineering for Improved Credit Card Fraud Detection. in IEEE Access, vol. 10, pp. 16400-16407, 2022, Doi: 10.1109/ACCESS.2022.3148298.
6. Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602-613.
7. Kuldeep, R., Chu Kiong, L., Manjeevan, S., Chee, P.L., and Asoke, K.N. (2018). Credit card Fraud detection using AdaBoost. DOI 10.1109/ACCESS.2018.2806420. http://creativecommons.org/licenses/by/3.0/.
8. John, O.A., Adebayo, O.A., and Samuel, A.O. (2017). Credit Card Fraud Detection using machine learning techniques: A comparative analysis. International Journal of Soft Computing and Engineering (IJSCE). 978-1-5090-4642-3,1, 32-38.
9. Prusti, D., and Rath, S.K. (2019). Web service-based credit card fraud detection by applying machine learning techniques, in Proceedings of the TENCON 2019-2019 IEEE Region 10 Conference (TENCON), Kochi, India, 492–497. doi: 10.1109/TEN-CON.2019.8929372.
10. Faraji, Z. (2022). A Review of Machine Learning Applications for Credit Card Fraud Detection with A Case study. SEISENSE Journal of Management, 5(1), 49–59. https://doi.org/10.33215/sjom.v5i1.770
11. Bommala H., Basha R.M., Rajarao B., Sangeetha K. (2022). An Innovative Model-Based Approach for Credit Card Fraud Detection Using K-Nearest. International Conference on Advances in Computer Engineering and Communication Systems. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-7389-4_19
nn[/if 1104][if 1104 not_equal=””]n
- [foreach 1102]n t
- [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
n[/foreach]
n[/if 1104]
nn
nn[if 1114 equals=”Yes”]n
n[/if 1114]
n
n
n
International Journal of Algorithms Design and Analysis Review
n
n
n
n
n
n
Volume | 01 |
Issue | 01 |
Received | June 21, 2023 |
Accepted | July 3, 2023 |
Published | July 25, 2023 |
n
n
n
n
n[/foreach]
n[/if 1190] [if 1177 not_equal=””]n
n
n[/foreach]
n[/if 1177]
n
n
n
n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n n function myfun() {n x = document.getElementById(“editor”);n y = document.getElementById(“down”);n z = document.getElementById(“up”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n function myfun2() {n x = document.getElementById(“reviewer”);n y = document.getElementById(“down2”);n z = document.getElementById(“up2”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n”}]