A review on Advanced Materials for Sustainable Innovation and Innovative Applications in Chemical Engineering

Year : 2024 | Volume :11 | Issue : 01 | Page : –

Meena Vangalapati

Awab Mubark Musa Ali

Satti Amrutha

  1. Assistant Professor Andhra University,Visakhapatnam. 530003 Andhra Pradesh India
  2. Research Scholar Andhra University,Visakhapatnam. 530003 Andhra Pradesh India
  3. Research Scholar Andhra University,Visakhapatnam. 530003 Andhra Pradesh India


High level materials assume a vital part in driving feasible mechanical headways across different enterprises. This comprehensive review paper aims to provide an in-depth analysis of the properties, synthesis methods, and potential applications of advanced materials, focusing particularly on nanomaterials, biomaterials, and smart materials. These materials exhibit unique characteristics that render them indispensable for a wide array of applications, spanning energy storage, environmental remediation, healthcare, and electronics.
Nanomaterials, characterized by their small size and high surface area-to-volume ratio, possess exceptional mechanical, electrical, and optical properties. They find utility in diverse fields such as drug delivery systems, sensors, catalysts, and coatings, where their enhanced performance attributes contribute to improved functionality and efficiency. Biomaterials, on the other hand, offer biocompatibility and bioactivity, making them ideal for medical implants, tissue engineering, and drug delivery systems. Their similarity with organic frameworks empowers progressions in regenerative medication and customized medical services. Smart materials, distinguished by their responsiveness to external stimuli like temperature or light, serve as key components in actuators, sensors, and adaptive structures, facilitating the development of intelligent systems with dynamic capabilities.
Despite their promising applications, advanced materials encounter challenges related to scalability, cost-effectiveness, and commercialization. Conquering these obstacles requires deliberate endeavors from analysts, specialists, and policymakers. Innovative synthesis methods and manufacturing processes are being developed to address scalability issues and improve cost-effectiveness. Furthermore, policymakers play a vital role in fostering the adoption of advanced materials by implementing supportive regulations and incentives that encourage investment in research, development, and commercialization efforts.
In conclusion, this review paper serves as a valuable resource for stakeholders involved in advancing sustainable technologies through the utilization of advanced materials. By comprehensively understanding the properties and potential applications of nanomaterials, biomaterials, and smart materials, and by collaboratively addressing the associated challenges, we can expedite the development of environmentally friendly technologies that benefit society as a whole.

Keywords: Hydrophobicity, suspension, diffusion, environmental remediation, healthcare, electronics

[This article belongs to Emerging Trends in Chemical Engineering(etce)]

How to cite this article: Meena Vangalapati, Awab Mubark Musa Ali, Satti Amrutha. A review on Advanced Materials for Sustainable Innovation and Innovative Applications in Chemical Engineering. Emerging Trends in Chemical Engineering. 2024; 11(01):-.
How to cite this URL: Meena Vangalapati, Awab Mubark Musa Ali, Satti Amrutha. A review on Advanced Materials for Sustainable Innovation and Innovative Applications in Chemical Engineering. Emerging Trends in Chemical Engineering. 2024; 11(01):-. Available from: https://journals.stmjournals.com/etce/article=2024/view=148228


[1]      N. Baig, I. Kammakakam, W. Falath, and I. Kammakakam, “Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges,” Mater Adv, vol. 2, no. 6, pp. 1821–1871, 2021, doi: 10.1039/d0ma00807a.

[2]      G. Guisbiers, S. Mejía-Rosales, and F. Leonard Deepak, “Nanomaterial properties: Size and shape dependencies,” J Nanomater, vol. 2012, pp. 2012–2014, 2012, doi: 10.1155/2012/180976.

[3]      A. KOÇAK and B. KARASU, “General Evaluations of Nanoparticles,” El-Cezeri Fen ve Mühendislik Derg, vol. 5, no. 1, pp. 191–236, 2018, doi: 10.31202/ecjse.361663.

[4]      K. Wegner, B. Schimmoeller, B. Thiebaut, C. Fernandez, and T. N. Rao, “Pilot plants for industrial nanoparticle production by flame spray pyrolysis,” KONA Powder Part J, vol. 29, no. 29, pp. 251–265, 2011, doi: 10.14356/kona.2011025.

[5]      A. M. Ealias and M. P. Saravanakumar, “A review on the classification, characterisation, synthesis of nanoparticles and their application,” IOP Conf Ser Mater Sci Eng, vol. 263, no. 3, 2017, doi: 10.1088/1757-899X/263/3/032019.

[6]      T. A. Saleh, “Nanomaterials: Classification, properties, and environmental toxicities,” Environ Technol Innov, vol. 20, p. 101067, 2020, doi: 10.1016/j.eti.2020.101067.

[7]      J. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application. 2005.

[8]      S. Talam, S. R. Karumuri, and N. Gunnam, “Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles,” ISRN Nanotechnol, vol. 2012, pp. 1–6, 2012, doi: 10.5402/2012/372505.

[9]      N. B. Singh, “Green synthesis of nanomaterials,” Handb Microb Nanotechnol, pp. 225–254, 2022, doi: 10.1016/B978-0-12-823426-6.00007-3.

[10]    V. Amendola and M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?,” Phys Chem Chem Phys, vol. 15, no. 9, pp. 3027–3046, 2013, doi: 10.1039/c2cp42895d.

[11]    Y. Chen et al., “Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications,” Chem Rev, vol. 118, no. 13, pp. 6409–6455, 2018, doi: 10.1021/acs.chemrev.7b00727.

[12]    Q. Wu, W. S. Miao, Y. Du Zhang, H. J. Gao, and D. Hui, “c,” Nanotechnol Rev, vol. 9, no. 1, pp. 259–273, 2020, doi: 10.1515/ntrev-2020-0021.

[13]    H. Zeng et al., “Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review,” Adv Funct Mater, vol. 22, pp. 1333–1353, Apr. 2012, doi: 10.1002/adfm.201102295.

[14]    S. I. Thakore, P. S. Nagar, R. N. Jadeja, M. Thounaojam, R. V. Devkar, and P. S. Rathore, “Sapota fruit latex mediated synthesis of Ag, Cu mono and bimetallic nanoparticles and their in vitro toxicity studies,” Arab J Chem, vol. 12, no. 5, pp. 694–700, 2019, doi: 10.1016/j.arabjc.2014.12.042.

[15]    S. Iravani, “Green synthesis of metal nanoparticles using plants,” Green Chem, vol. 13, pp. 2638–2650, Oct. 2011, doi: 10.1039/C1GC15386B.

[16]    M. Salavati-Niasari, F. Davar, and N. Mir, “Synthesis and characterization of metallic copper nanoparticles via thermal decomposition,” Polyhedron, vol. 27, pp. 3514–3518, Nov. 2008, doi: 10.1016/j.poly.2008.08.020.

[17]    V. M. Arole and S. V Munde, “Fabrication of Nanomaterials by Top-Down and Bottom-Up Approaches – an Overview,” JAASTMaterial Sci (Special Issue, vol. 1, no. 2, pp. 89–93, 2014.

[18]    T. Prasad Yadav, R. Manohar Yadav, and D. Pratap Singh, “Mechanical Milling: a Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites,” Nanosci Nanotechnol, vol. 2, no. 3, pp. 22–48, 2012, doi: 10.5923/j.nn.20120203.01.

[19]    R. Janot and D. Guérard, “Ball-milling in liquid media: Applications to the preparation of anodic materials for lithium-ion batteries,” Prog Mater Sci, vol. 50, pp. 1–92, Jan. 2005, doi: 10.1016/S0079-6425(03)00050-1.

[20]    Y. Bao, T. Wen, A. C. S. Samia, A. Khandhar, and K. M. Krishnan, “Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine,” J Mater Sci, vol. 51, no. 1, pp. 513–553, 2015, doi: 10.1007/s10853-015-9324-2.

[21]    K. B. Narayanan and N. Sakthivel, “Biological synthesis of metal nanoparticles by microbes,” Adv Colloid Interface Sci, vol. 156, no. 1–2, pp. 1–13, 2010, doi: 10.1016/j.cis.2010.02.001.

[22]    A. V. Rane, K. Kanny, V. K. Abitha, S. Thomas, and S. Thomas, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. Elsevier Ltd., 2018. doi: 10.1016/B978-0-08-101975-7.00005-1.

[23]    P. K. Ghosh, S. F. Ahmed, S. Jana, and K. K. Chattopadhyay, “Photoluminescence and field emission properties of ZnS:Mn nanoparticles synthesized by rf-magnetron sputtering technique,” Opt Mater (Amst), vol. 29, no. 12, pp. 1584–1590, 2007, doi: 10.1016/j.optmat.2006.07.016.

[24]    Ab et al., “Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review,” Adv Colloid Interface Sci, vol. 300, no. December 2021, p. 102597, 2022, doi: 10.1016/j.cis.2021.102597.

[25]    P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, “Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications,” J Drug Deliv Sci Technol, vol. 53, no. June, p. 101174, 2019, doi: 10.1016/j.jddst.2019.101174.

[26]    M. Catauro, E. Tranquillo, G. Dal Poggetto, M. Pasquali, A. Dell’Era, and S. V. Ciprioti, “Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by the sol-gel method,” Materials (Basel), vol. 11, no. 12, 2018, doi: 10.3390/ma11122364.

[27]    D. Bokov et al., “Nanomaterial by Sol-Gel Method: Synthesis and Application,” Adv Mater Sci Eng, vol. 2021, 2021, doi: 10.1155/2021/5102014.

[28]    L. M. Hoyos-Palacio et al., “Compounds of carbon nanotubes decorated with silver nanoparticles via in-situ by chemical vapor deposition (CVD),” J Mater Res Technol, vol. 8, no. 6, pp. 5893–5898, 2019, doi: 10.1016/j.jmrt.2019.09.062.

[29]    B. Qin et al., “Substrates in the Synthesis of Two-Dimensional Materials via Chemical Vapor Deposition,” Chem Mater, vol. 32, no. 24, pp. 10321–10347, 2020, doi: 10.1021/acs.chemmater.0c03549.

[30]    M. U. Zahid, E. Pervaiz, A. Hussain, M. I. Shahzad, and M. B. K. Niazi, “Synthesis of carbon nanomaterials from different pyrolysis techniques: A review,” Mater Res Express, vol. 5, no. 5, 2018, doi: 10.1088/2053-1591/aac05b.

[31]    B. Yu et al., “Fabrication of PLA/CNC/CNT conductive composites for high electromagnetic interference shielding based on Pickering emulsions method,” Compos Part A Appl Sci Manuf, vol. 125, no. January, p. 105558, 2019, doi: 10.1016/j.compositesa.2019.105558.

[32]    U. Arena, M. Mastellone, G. Camino, and E. Boccaleri, “An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins,” Polym Degrad Stab – POLYM Degrad STABIL, vol. 91, pp. 763–768, Apr. 2006, doi: 10.1016/j.polymdegradstab.2005.05.029.

[33]    N. Mishra et al., “Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes,” J Anal Appl Pyrolysis, vol. 94, no. March, pp. 91–98, 2012, doi: 10.1016/j.jaap.2011.11.012.

[34]    R. Unless, P. Act, W. Rose, T. If, and W. Rose, “This is a repository copy of Carbon nanotubes synthetized from gaseous products of waste polymer pyrolysis and their application . White Rose Research Online URL for this paper : Version : Accepted Version Article : Borsodi , N , Szentes , A , Miskolczi ,” 2016.

[35]    D. Janas and K. K. Koziol, “Carbon nanotube fibers and films: Synthesis, applications and perspectives of the direct-spinning method,” Nanoscale, vol. 8, no. 47, pp. 19475–19490, 2016, doi: 10.1039/c6nr07549e.

[36]    P. Mohanpuria, N. K. Rana, and S. K. Yadav, “Biosynthesis of nanoparticles: Technological concepts and future applications,” J Nanoparticle Res, vol. 10, no. 3, pp. 507–517, 2008, doi: 10.1007/s11051-007-9275-x.

[37]    M. Singh, C. K. Mitra, and R. K. Morve, “Rizwan, 2014,” J Nanoparticles, vol. 2014, no. 2, pp. 740–757, 2014.

[38]    A. Bratovcic, “Different Applications of Nanomaterials and Their Impact on the Environment,” Int J Mater Sci Eng, vol. 5, no. 1, pp. 1–7, 2019, doi: 10.14445/23948884/ijmse-v5i1p101.

[39]    V. Prakash Sharma, U. Sharma, M. Chattopadhyay, and V. N. Shukla, “Advance Applications of Nanomaterials: A Review,” Mater Today Proc, vol. 5, no. 2, pp. 6376–6380, 2018, doi: 10.1016/j.matpr.2017.12.248.

[40]    B. Schrick, B. W. Hydutsky, J. L. Blough, and T. E. Mallouk, “Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater,” Chem Mater, vol. 16, no. 11, pp. 2187–2193, 2004, doi: 10.1021/cm0218108.

[41]    N. Barkalina, C. Charalambous, C. Jones, and K. Coward, “Recent advances in construction of small molecule-based fluorophore-drug conjugates,” Nanomedicine Nanotechnology, Biol Med, vol. 10, no. 5, pp. e921–e938, 2014, doi: 10.1016/j.nano.2014.01.001.

[42]    M. J. O’Connell, “Carbon Nanotubes Properties and Applications,” Carbon Nanotub Prop Appl, no. October 2012, pp. 37–41, 2018, doi: 10.1201/9781315222127.

[43]    A. K. Khan, R. Rashid, G. Murtaza, and A. Zahra, “Gold nanoparticles: Synthesis and applications in drug delivery,” Trop J Pharm Res, vol. 13, no. 7, pp. 1169–1177, 2014, doi: 10.4314/tjpr.v13i7.23.

[44]    L. Xu, Y. Y. Wang, J. Huang, C. Y. Chen, Z. X. Wang, and H. Xie, “Silver nanoparticles: Synthesis, medical applications and biosafety,” Theranostics, vol. 10, no. 20, pp. 8996–9031, 2020, doi: 10.7150/thno.45413.

[45]    K. Agarwal, H. Rai, and S. Mondal, “Quantum dots: an overview of synthesis, properties, and applications,” Mater Res Express, vol. 10, no. 6, 2023, doi: 10.1088/2053-1591/acda17.

[46]    A. A. Bubnov et al., “Laser-Ablative Synthesis of Silicon–Iron Composite Nanoparticles for Theranostic Applications,” Nanomaterials, vol. 13, no. 15, 2023, doi: 10.3390/nano13152256.

[47]    A. Santhiran, P. Iyngaran, P. Abiman, and N. Kuganathan, “Graphene Synthesis and Its Recent Advances in Applications—A Review,” C, vol. 7, no. 4, p. 76, 2021, doi: 10.3390/c7040076.

[48]    X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications,” Chem Rev, vol. 107, no. 7, pp. 2891–2959, 2007, doi: 10.1021/cr0500535.

[49]    K. Gajanan and S. N. Tijare, “Applications of nanomaterials,” Mater Today Proc, vol. 5, no. 1, pp. 1093–1096, 2018, doi: 10.1016/j.matpr.2017.11.187.

[50]    M. Shafiq, S. Anjum, C. Hano, I. Anjum, and B. H. Abbasi, “An overview of the applications of nanomaterials and nanodevices in the food industry,” Foods, vol. 9, no. 2, pp. 1–27, 2020, doi: 10.3390/foods9020148.

[51]    W. Lang et al., “Recent advances in construction of small molecule-based fluorophore-drug conjugates,” J Pharm Anal, vol. 10, no. 5, pp. 434–443, 2020, doi: 10.1016/j.jpha.2020.08.006.

[52]    B. Reidy, A. Haase, A. Luch, K. A. Dawson, and I. Lynch, “Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications,” Materials (Basel), vol. 6, no. 6, pp. 2295–2350, 2013, doi: 10.3390/ma6062295.

[53]    J. A. Raiford, S. T. Oyakhire, and S. F. Bent, “Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells,” Energy Environ Sci, vol. 13, no. 7, pp. 1997–2023, 2020, doi: 10.1039/d0ee00385a.

[54]      Trinath Biswal, Sushant Kumar BadJena, Debabrata Pradhan,Sustainable biomaterials and their applications: A short review,Materials Today: Proceedings,Volume 30, Part 2,2020,Pages 274-282,ISSN 2214-7853,https://doi.org/10.1016/j.matpr.2020.01.437.

[55]      Hench Larry L. And Thompson Ian.2010Twenty-first century challenges for biomaterials. J. R. Soc. Interface.7: S379–S391. http://doi.org/10.1098/rsif.2010.0151.focus

[56]      Hubbell, J. Biomaterials in Tissue Engineering. Nat Biotechnol 13, 565–576 (1995). https://doi.org/10.1038/nbt0695-565

[57] Bowman, H. F., Cravalho, E. G., & Woods, M. (1975). Theory, Measurement, and Application of Thermal Properties of Biomaterials. Annual Review of Biophysics and Bioengineering, 4(1), 43–80. doi:10.1146/annurev.bb.04.060175.000355


[58]      J.E. Lemons, L.C. Lucas,Properties of biomaterials,The Journal of Arthroplasty, Volume 1, Issue 2,1986,Pages 143-147,ISSN 0883-5403,https://doi.org/10.1016/S0883-5403(86)80053-5.

[59] Sol–Gel Technology,Larry L. Hench, RodrigoOrefice,https://doi.org/10.1002/0471238961.19151208051403.a01

[60]L. S. Laurencin C. T. 2006Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery, Adv Biochem Engin/Biotechnol, 102 47 90

[61]      J., E., J., K., S., P., A., L., De Faria, E. H., e Silva, M. L. A., … N., C. (2011). Biomaterials and Sol–Gel Process: A Methodology for the Preparation of Functional Materials. InTech. doi: 10.5772/23202

[62]      Styskalik, A.; Skoda, D.; Barnes, C.E.; Pinkas, J. The Power of Non-Hydrolytic Sol-Gel Chemistry: A Review. Catalysts 2017, 7, 168. https://doi.org/10.3390/catal7060168

[63]      Wang, X.; Liu, J.; Wang, P.; DeMello, A.; Feng, L.; Zhu, X.; Wen, W.; Kodzius, R.; Gong, X. Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes 2018, 9, 283. https://doi.org/10.3390/genes9060283

[64]      F. M. White, Viscous Fluid Flow, 2nd edition, McGraw-Hill, Boston, Second edition edn., 1991.

[65]      Beebe, David & Mensing, Glennys & Walker, Glenn. (2002). Physics and Applications of Microfluidics in Biology. Annual review of biomedical engineering. 4. 261-86. 10.1146/annurev.bioeng.4.112601.125916.

[66]      Yesl Jun, Edward Kang, Sukyoung Chae, Sang-Hoon Lee,Microfluidic spinning of micro- and nano-scale fibers for tissue engineering

[67]      Dr. Shuke Wu, Dr. Radka Snajdrova, Dr. Jeffrey C. Moore, Dr. Kai Baldenius, Prof. Dr. Uwe T. Bornscheuer, Biocatalysis: Enzymatic Synthesis for Industrial Applications, https://doi.org/10.1002/anie.202006648

[68]      Alexander M. Klibanov, Gennady P. Samokhin, Karel Martinek, Ilya V. Berezin A new approach to preparative enzymatic synthesis,26 March 2000 , https://doi.org/10.1002/(SICI)1097-0290(20000320)67:63.0.CO;2-2

[69]      Mikolasch, A., Schauer, F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82, 605–624 (2009). https://doi.org/10.1007/s00253-009-1869-z

[70]      Christman KL. Biomaterials for tissue repair. Science. 2019 Jan 25;363(6425):340-341. doi: 10.1126/science.aar2955. PMID: 30679357; PMCID: PMC6697375

[71]      Whitaker, R., Hernaez-Estrada, B., Hernandez, R. M., Santos-Vizcaino, E., & Spiller, K. L. (2021). Immunomodulatory Biomaterials for Tissue Repair. Chemical Reviews. doi:10.1021/acs.chemrev.0c00895 10.1021/acs.chemrev.0c00895

[72]      Peng Shen, Yanxin Chen, Shuai Luo, Zhiyuan Fan, Jilong Wang, Jiang Chang, Junjie Deng,

[73]      B.J. Tighe, A. Mann 15 – The development of biomaterials for contact lens applications: Effects of wear modality on materials design,Editor(s): Traian V. Chirila, Damien G. Harkin,In Woodhead Publishing Series in Biomaterials,Biomaterials and Regenerative Medicine in Ophthalmology (Second Edition),Woodhead Publishing,2016,Pages 369-399,ISBN 9780081001479,

[74]      https://doi.org/10.1016/B978-0-08-100147-9.00015-8. Applications of biomaterials for immunosuppression in tissue repair and regeneration,Acta Biomaterialia,Volume 126,2021,ISSN 1742-7061,https://doi.org/10.1016/j.actbio.2021.03.019.

[75]      Miguel F. Refojo,Current status of biomaterials in ophthalmology,Survey of Ophthalmology,Volume 26, Issue 5,1982,Pages 257-265,ISSN 0039-6257,https://doi.org/10.1016/0039-6257(82)90161-8.

[76]      Wilson, W. R., Laird, N., Moo-Young, G., Soeldner, J. S., Kavesh, D. A., and Macmeel, J. W. (1982). The relationship of idiopathic sudden hearing loss to diabetes mellitus. Laryngoscope 92, 155–160. doi: 10.1002/lary.1982.92.2.155

[77]      The report “Biomaterials Market Size, Growth by Type of Materials (Metallic, Ceramic, Polymers, Natural), Application (Cardiovascular, Orthopedic, Dental, Plastic Surgery, Wound Healing, Neurological disorders, Tissue Engineering, Ophthalmology) – Global Forecast to 2025”

[78]      Ananth H, Kundapur V, Mohammed HS, Anand M, Amarnath GS, Mankar S. A Review on Biomaterials in Dental Implantology. Int J Biomed Sci. 2015 Sep;11(3):113-20. PMID: 26508905; PMCID: PMC4614011.

[79]      Mussano, Federico, et al. “Ceramic biomaterials for dental implants: Current use and future perspectives.” Dental Implantology and Biomaterial (2016): 63-78.

[80]      Pearce AI, Richards RG, Milz S, Schneider E, et al. Animal models for implant biomaterial research in bone: a review. European Cells and Materials. 2007;13:1–10. [PubMed] [Google Scholar] [Ref list]

[81]      O’Brien WJ. Dental Materials and Their Selection. (Fourth Edition) [Google Scholar] [Ref list]

[82]      Hench L. L., Splinter R. J., Allen W. C.& Greenlee T. K.. 1971 Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 2, 117–141. Crossref, Google Scholar

[83]      Schoen F. J., Levy R. J.& Piehler H. R.. 1992 Pathological considerations in replacement cardiac valves. J. Soc. Cardiol. Path. 1, 29–52. Crossref, PubMed, Google Scholar

[84]      Saeid Kargozar, Seeram Ramakrishna, Masoud Mozafari,Chemistry of biomaterials: future prospects, Current Opinion in Biomedical Engineering,Volume 10,2019,Pages 181-190,ISSN 2468-4511,https://doi.org/10.1016/j.cobme.2019.07.003.

[85]      Chaudhari, A.A.; Vig, K.; Baganizi, D.R.; Sahu, R.; Dixit, S.; Dennis, V.; Singh, S.R.; Pillai, S.R. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int. J. Mol. Sci. 2016, 17, 1974. https://doi.org/10.3390/ijms17121974

[86]      Linzhu Su, Yuanfeng Li, Yong Liu, Yingli An, Linqi Shi , Recent Advances and Future Prospects on Adaptive Biomaterials for Antimicrobial Applications ,2019 , https://doi.org/10.1002/mabi.201900289

[87]. Addington, D.M. and D.L. Schodek, Smart materials and new technologies: for the architecture and design professions. 2005: Routledge.

[88]. Addington, M. and D. Schodek, Smart Materials and Technologies in Architecture: For the Architecture and Design Professions. 2012: Routledge.

[89]. Sadeghi, M.J., P. Masudifar, and F. Faizi. The Function of Smart Material’s behavior in architecture. in International Conference on Intelligent Building and Management, LACSIT press. 2011.

[90]. Mohamed, A.S.Y., Smart materials innovative technologies in architecture; towards innovative design paradigm. Energy Procedia, 2017. 115: p. 139-154.

[91]. Song, Y., W. Wei, and X. Qu, Colorimetric biosensing using smart materials. Advanced Materials, 2011. 23(37): p. 4215-4236.

[92]. Kamila, S., Introduction, classification and applications of smart materials: an overview. American Journal of Applied Sciences, 2013. 10(8): p. 876.

[93]. Gautam, P. and A. Valiathan, Bio-smart dentistry: stepping into the future! Trends in Biomaterials and Artificial Organs, 2008. 21(2): p. 94-97.

[94]. Ferrara, M. and M. Bengisu, Materials that change color, in Materials that Change Color. 2014, Springer. p. 9-60.

[95]. Parida, B., S. Iniyan, and R. Goic, A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 2011. 15(3): p. 1625-1636.

[96]. Chang, M.-H., et al., Light emitting diodes reliability review. Microelectronics Reliability, 2012. 52(5): p. 762-782.

[97] J. Damodharan, A. Sreedharan, T. Ramalingam, A review on smart materials, types and applications, Int. J. Eng. Technol. Sci. Res. 5 (2018) 5.

[98] H. Kulkarni, K. Zohaib, A. Khusru, K. Shravan Aiyappa, Application of piezoelectric technology in automotive systems, Mater. Today Proc. 5 (2018) 21299–21304, https://doi.org/10.1016/j.matpr.2018.6.532.

[99] Y. Seo, A new yield stress scaling function for electrorheological fluids, J.

Nonnewton. Fluid Mech. 166 (2011) 241–243, https://doi.org/10.1016/j.


[100] C.J. Lin, C.Y. Lee, Y. Liu, Vibration control design for a plate structure with electrorheological ATVA using interval Type-2 fuzzy system, Appl. Sci. 7 (2017), https://doi.org/10.3390/app7070707.

[101] S.K. Wahi, M. Kumar, S. Santapuri, M.J. Dapino, Computationally efficient locally linearized constitutive model for magnetostrictive materials, J. Appl.

Phys. 125 (2019), https://doi.org/10.1063/1.5086953.

[102] I.N. Qader, M. Kök, F. Dagdelen, Y. Aydog˘du, A review of smart materials: researches and applications, 2019 (2019): 755–788.

[103] V. Apicella, C.S. Clemente, D. Davino, D. Leone, C. Visone, Review of modeling and control of magnetostrictive actuators, Actuators 8 (2019) 1–30, https://


[104] B.C. Keswani, S.I. Patil, Y.D. Kolekar, C.V. Ramana, Improved magnetostrictive properties of cobalt ferrite (CoFe2O4) by Mn and Dy co-substitution for magneto-mechanical sensors, J. Appl. Phys. 126 (2019), https://doi.org/10.1063/1.5114815.

[105] J.-R. Lee, C.-Y. Ryu, B.-Y. Koo, S.-G. Kang, C.-S. Hong, C.-G. Kim, In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system, Smart Mater. Struct. 12 (2003) 147–155, https://doi.org/10.1088/0964-1726/12/1/317.

[106] G. Zhao, H. Pei, H. Liang, Measurement of additional strains in shaft lining using differential resistance sensing technology, Int. J. Distrib. Sens. Networks 9 (2013) 153834, https://doi.org/10.1155/2013/153834.

[107] M. Maheshwari, V.G.M. Annamdas, J.H.L. Pang, A. Asundi, S.C. Tjin, Crack monitoring using multiple smart materials; fiber-optic sensors & piezo sensors, Int. J. Smart Nano Mater. 8 (2017) 41–55, https://doi.org/10.1080/19475411.2017.1298220.

[108] M. Sun, W.J. Staszewski, R.N. Swamy, Smart sensing technologies for structural

health monitoring of civil engineering structures, Adv. Civ. Eng. 2010 (2010), https://doi.org/10.1155/2010/724962.

[109] M. Maheshwari, A.K. Asundi, S.C. Tjin, Effect of the location and size of a single crack on first fundamental frequency of a cantilever beam using fiber optic polarimetric sensors and characterisation of FBG sensors, in: J.A. Epaarachchi, A.K. Lau, J. Leng (Eds.), Fourth Int. Conf. Smart Mater. Nanotechnol. Eng., SPIE, 2013: pp. 114–121. https://doi.org/10.1117/12.2027726.

[110]. Shandilya M, Rai R, Singh J (2016) Review: hydrothermal technology for smart materials. Adv Appl Ceram 115:354–376

[111]. Reyes-Ortega F (2014) 3-pH-responsive polymers: properties, synthesis and applications, In: M.R. Aguilar, J. San Román (Eds.)Smart Polymers and their Applications, Woodhead Publishing 45–92

[112]. Senthil RA, Osman S, Pan J, Sun Y, Kumar TR, Manikandan A (2019) A facile hydrothermal synthesis of visible-light responsive BiFeWO6/MoS2 composite as superior photocatalyst for degradationof organic pollutants. Ceram Int 45:18683–18690

[113]. Fadillah G, Triana S, Chasanah U, Saleh TA (2020) Titaniananorods modified carbon paste electrode for the sensitive voltammetric determination of BPA in exposed bottled water. Sensing and Bio-Sensing Research 30:100391

[114]. Saleh TA, (2018)Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon, Journal of Cleaner Production 172: 2123-2132

[115]. Zhao J, Liu Y, Zheng C, Lei Q, Dong Y, Zhao X, Yin J (2018) Pickering emulsion polymerization of poly(ionic liquid)s encapsulated nano-SiO2 composite particles with enhanced electroresponsive characteristic. Polymer 146:109–119

[116]. Rodrigues LDA, Hurtado CR, Macedo EF, Tada DB, Guerrini LM, Oliveira MP (2020) Colloidal properties and cytotoxicity of enzymatically hydrolyzed cationic starch-graft-poly(butyl acrylate-co-methyl methacrylate) latex by surfactant-free emulsion polymerization for paper coating application. Prog Org Coat 145:105693

[117]. Yamazaki T, Ogawa A, Koizumi H, Tsuji T (2021) Controlled soap-free emulsion polymerization stability using a novel cationicazo radical initiator with chloride or triflate counter anion. Colloids Surf, A 609:125614

[118]. Meléndez-Ortiz HI, Varca GH, Zavala-Lagunes E, Bucio E (2016) State of the art of smart polymers: From fundamentals to final applications. In Polymer Science: Research Advances, Practical Applications, and Educational Aspects. Formatex Research Center, Badajoz, Spain


[119]. Toozandehjani, M., et al., Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited. American Journal of Aerospace Engineering, 2018. 5(1): p. 9-15.

[120]. Barbarino, S., et al., Wing shape control through an SMA-based device. Journal of Intelligent Material Systems and Structures, 2009. 20(3): p. 283-296.

[121]. Giurgiutiu, V. and A.N. Zagrai. Use of smart materials technologies in radiation environments and nuclear industry. in Smart Structures and Materials 2000: Smart Structures and Integrated Systems. 2000. International Society for Optics and Photonics.

[122]. Qader, I.N. and M. Omar, Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires. Bulletin of Materials Science, 2017. 40(3): p. 599-607.

[123]. Purushothaman, K. and G. Muralidharan, The effect of annealing temperature on the electrochromic properties of nanostructured NiO films. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1195-1201.

[124]. Mamand, S., M. Omar, and A. Muhammed, Calculation of lattice thermal conductivity of suspended GaAs nanobeams: Effect of size dependent parameters. Adv Mat Lett, 2012. 3(6): p. 449-58.

[125]. Qader, I.N., B.J. Abdullah, and H.H. Karim, Lattice Thermal Conductivity of Wurtzite Bulk and Zinc Blende CdSe Nanowires and Nanoplayer. Eurasian Journal of Science & Engineering, 2017. 3(1): p. 9-26.

[126]. Li, D., et al., Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 2003. 83(14): p. 2934-2936.

[127]. Omar, M., Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles. International Journal of Thermophysics, 2016. 37(1): p. 11.

[128]. Abdullah, B.J., M.S. Omar, and Q. Jiang, Size effects on cohesive energy, Debye temperature and lattice heat capacity from first-principles calculations of Sn nanoparticles. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018. 88(4): p. 629-632.

[129]. Abdullah, B.J., Q. Jiang, and M.S. Omar, Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures. Bulletin of Materials Science, 2016. 39(5): p. 1295-1302.

[130]. Li, C., E.T. Thostenson, and T.-W. Chou, Sensors and actuators based on carbon nanotubes and their composites: a review. Composites Science and Technology, 2008. 68(6): p. 1227-1249.

Regular Issue Subscription Review Article
Volume 11
Issue 01
Received March 12, 2024
Accepted May 4, 2024
Published May 29, 2024