JoRSG

Rooftop Layout Optimization for PV Installation using GIS

[{“box”:0,”content”:”

n

n

 > 

n

n

 > 

n

n

n

n

n

n

n

By [foreach 286]u00a0

u00a0Segura-Muñoz F.J., Armenta-Déu C., Domínguez-Bravo F.J.,

[/foreach]
nJanuary 10, 2023 at 4:48 am

n

nAbstract

n

In this work, we develop a new modelling process to optimize the PV installation layout on industrial building rooftops; the model searches for maximizing the number of installed PV panels in a defined spot area, characterized by its shape, size, tilt and orientation. The study focuses on areas of latitude between tropics, but is useful for other latitudes. The method is applied to an industrial conglomerate of reference, made up of 34 industries, whose geographical characteristics have been provided by the GIS technique. The proposed model reduces the area of the spot to a very small size (5m x 5m), thanks to the use of the GIS tools, thus increasing the precision of results and making the solution more reliable. The accuracy of the method is over 98.5%. The model takes into account not only the shape and size of the PV panel but also the tilt angle. The model predicts the number of panels as a function of the tilt angle of the panel and the azimuth of the rooftop. The modelling process has allowed obtaining the surface coverage factor of the PV layout for panels facing to the Equator in rooftops with a specific azimuth. The results of the modelling shows that coverage factor increases with the rooftop’s azimuth, having a minimum value of 75% for a rooftop azimuth of 45° and a maximum of 92% for angles of 5° and 85°.

n

n

n

n

Volume :u00a0u00a012 | Issue :u00a0u00a01 | Received :u00a0u00a0March 17, 2020 | Accepted :u00a0u00a0April 3, 2021 | Published :u00a0u00a0April 28, 2021n[if 424 equals=”Regular Issue”][This article belongs to Journal of Remote Sensing & GIS(jorsg)] [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue Rooftop Layout Optimization for PV Installation using GIS under section in Journal of Remote Sensing & GIS(jorsg)] [/if 424]
Keywords Coverage factor, GIS technique, PV panels, rooftop

n

n

n

n

n


n[if 992 equals=”Transformative”]

n

n

Full Text

n

n

n

[/if 992][if 992 not_equal=”Transformative”]

n

n

Full Text

n

n

n

[/if 992] n


nn

[if 379 not_equal=””]n

[foreach 379]n

n[/foreach]

n[/if 379]

n

References

n[if 1104 equals=””]n

1. Friedlingstein P, O’Sullivan M, Jones MW,et al.Global carbon budget 2020. Earth System Science Data. 2020;12(4):3269-3340.
2. Agencia Internacional de la Energía (AIE), Estadísticas de la AIE © OCDE/AIE, iea.org/stats/index.asp.; Estadísticas de energía y balances de países no pertenecientes a la OCDE; Estadísticas de energía de países de la OCDE, y balances de energía de pa,‖ 2019. [Online].Available:https://datos.bancomundial.org/indicador/EG.USE.ELEC.KH.PC?end=2014&locations=MX&start=1960&view=chart.
3. . T. A.-T. T.- onz lez Velasco, Energías renovables. Editorial evert , arcelona. 1st ed. Editorial Reverté; 01-01-2009.
4. I. Renewable Energy Agency, Renewable Energy Capacity Statistics (2019)[Online] Available fromhttps://www.irena.org//media/Files/IRENA/Agency/Publication/2019/Mar/IRENA_RE_Capacity_Statistics_2019.pdf.
5. A. Duguay-Tetzlaff et al. Meteosat land surface temperature climate data record: Achievable accuracy and potential uncertainties, Remote Sensors.2015; 7(10):13139–13156.
6. S. De Proceso ,Estación de ecepción de Im genes del Sat lite Meteosat Segunda eneración : Arquitectura Informática y Software de Proceso CIEMAT; 2010.
7. ArcGIS. 2017, May. ArcGIS Help 10.2 – Using lidar in ArcGIS.. [online] Available from: https://resources.arcgis.com/en/help/main/10.2/index.html#//015w0000003z000000.
8. Zhong Q, Tong D. Spatial layout optimization for solar photovoltaic (PV) panel installation. Renewable Energy: 2020; 150:1-11.
9. Martín-Jiménez J, Del Pozo S, Sánchez-Aparicio M,et al. Multi-scale roof characterization from LiDAR data and aerial orthoimagery: Automatic computation of building photovoltaic capacity. Automation in Construction: 2020;109:102965.
10. Lingfors D, Bright JM, Engerer NA,et al. Comparing the capability of low-and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Applied Energy: 2017;205:1216-1230.
11. de Vries TN, Bronkhorst J, Vermeer M, et al. A quick-scan method to assess photovoltaic rooftop potential based on aerial imagery and LiDAR. Solar Energy: 2020; 209: 96-107.
12. epsg.io. 2021, February. WGS 84 / UTM zone 14N – EPSG:32614. [Online]. Available from: https://epsg.io/32614. 13. Instituto Nacional de Estadística y Geografía de México. 2017, month. Espacio y datos de México.[online]Availablefrom:https://www.inegi.org.mx/app/mapa/espacioydatos/default.aspx?ag=151060001.
14. P. D. Paul W. Stackhouse, Jr. 2016, January. NASA Surface Meteorology and Solar Energy.
15. G. I. Northern et al. 2015, January. NASA Surface Meteorology and Solar Energy. [online] Available from: https://eosweb. larc. nasa. gov/cgibin/sse/grid. cgi.,2015.
16. O. Perpiñán Lamigueiro, Energía Solar Fotovoltaica. 2011th ed., vol. 2. Creative Commons España: Spain: 2007.
17. Python.org. 2021, February. Welcome to Python.org. [Online] Available from: https://www.python.org/.
18. Python.org. 2021, February. The Python Language Reference — Python 3.9.2 documentation. [online] Available from: https://docs.python.org/3/reference/index.html.

nn[/if 1104] [if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””], [/if 1106]
  2. n[/foreach]

n[/if 1104]

n[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=”Regular Issue”] Regular Issue[/if 424] Open Access Article

n

Editors Overview

jorsg maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

n

“},{“box”:4,”content”:”

n“},{“box”:1,”content”:”

    By  [foreach 286]n

  1. n

    Segura-Muñoz F.J., Armenta-Déu C., Domínguez-Bravo F.J.

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. PhD (in progress), Professor, Researcher,Dpt. of Matter Strcuture, Thermal Physycs and Electronics. Faculty of Physical Sciences. Complutense University of Madrid, Dpt. of Matter Strcuture, Thermal Physycs and Electronics. Faculty of Physical Sciences. Complutense University of Madrid, Dpt. of Matter Strcuture, Thermal Physycs and Electronics. Faculty of Physical Sciences. Complutense University of Madrid,Madrid, Madrid, Madrid,Spain, Spain, Spain
  2. n[/if 1175][/foreach]

n

n

n

n

n

Abstract

nIn this work, we develop a new modelling process to optimize the PV installation layout on industrial building rooftops; the model searches for maximizing the number of installed PV panels in a defined spot area, characterized by its shape, size, tilt and orientation. The study focuses on areas of latitude between tropics, but is useful for other latitudes. The method is applied to an industrial conglomerate of reference, made up of 34 industries, whose geographical characteristics have been provided by the GIS technique. The proposed model reduces the area of the spot to a very small size (5m x 5m), thanks to the use of the GIS tools, thus increasing the precision of results and making the solution more reliable. The accuracy of the method is over 98.5%. The model takes into account not only the shape and size of the PV panel but also the tilt angle. The model predicts the number of panels as a function of the tilt angle of the panel and the azimuth of the rooftop. The modelling process has allowed obtaining the surface coverage factor of the PV layout for panels facing to the Equator in rooftops with a specific azimuth. The results of the modelling shows that coverage factor increases with the rooftop’s azimuth, having a minimum value of 75% for a rooftop azimuth of 45° and a maximum of 92% for angles of 5° and 85°.n

n

n

Keywords: Coverage factor, GIS technique, PV panels, rooftop

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Remote Sensing & GIS(jorsg)]

n[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Remote Sensing & GIS(jorsg)] [/if 424]

n

n

n


n[if 992 equals=”Subscription”]n

n

n

Full Text

n

n

nn[/if 992]n[if 992 not_equal=”Subscription”]n

n

Full Text

n

n

n

n


[/if 992]n[if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n[/foreach]

n

[/if 379]n

n

References

n[if 1104 equals=””]

1. Friedlingstein P, O’Sullivan M, Jones MW,et al.Global carbon budget 2020. Earth System Science Data. 2020;12(4):3269-3340.
2. Agencia Internacional de la Energía (AIE), Estadísticas de la AIE © OCDE/AIE, iea.org/stats/index.asp.; Estadísticas de energía y balances de países no pertenecientes a la OCDE; Estadísticas de energía de países de la OCDE, y balances de energía de pa,‖ 2019. [Online].Available:https://datos.bancomundial.org/indicador/EG.USE.ELEC.KH.PC?end=2014&locations=MX&start=1960&view=chart.
3. . T. A.-T. T.- onz lez Velasco, Energías renovables. Editorial evert , arcelona. 1st ed. Editorial Reverté; 01-01-2009.
4. I. Renewable Energy Agency, Renewable Energy Capacity Statistics (2019)[Online] Available fromhttps://www.irena.org//media/Files/IRENA/Agency/Publication/2019/Mar/IRENA_RE_Capacity_Statistics_2019.pdf.
5. A. Duguay-Tetzlaff et al. Meteosat land surface temperature climate data record: Achievable accuracy and potential uncertainties, Remote Sensors.2015; 7(10):13139–13156.
6. S. De Proceso ,Estación de ecepción de Im genes del Sat lite Meteosat Segunda eneración : Arquitectura Informática y Software de Proceso CIEMAT; 2010.
7. ArcGIS. 2017, May. ArcGIS Help 10.2 – Using lidar in ArcGIS.. [online] Available from: https://resources.arcgis.com/en/help/main/10.2/index.html#//015w0000003z000000.
8. Zhong Q, Tong D. Spatial layout optimization for solar photovoltaic (PV) panel installation. Renewable Energy: 2020; 150:1-11.
9. Martín-Jiménez J, Del Pozo S, Sánchez-Aparicio M,et al. Multi-scale roof characterization from LiDAR data and aerial orthoimagery: Automatic computation of building photovoltaic capacity. Automation in Construction: 2020;109:102965.
10. Lingfors D, Bright JM, Engerer NA,et al. Comparing the capability of low-and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Applied Energy: 2017;205:1216-1230.
11. de Vries TN, Bronkhorst J, Vermeer M, et al. A quick-scan method to assess photovoltaic rooftop potential based on aerial imagery and LiDAR. Solar Energy: 2020; 209: 96-107.
12. epsg.io. 2021, February. WGS 84 / UTM zone 14N – EPSG:32614. [Online]. Available from: https://epsg.io/32614. 13. Instituto Nacional de Estadística y Geografía de México. 2017, month. Espacio y datos de México.[online]Availablefrom:https://www.inegi.org.mx/app/mapa/espacioydatos/default.aspx?ag=151060001.
14. P. D. Paul W. Stackhouse, Jr. 2016, January. NASA Surface Meteorology and Solar Energy.
15. G. I. Northern et al. 2015, January. NASA Surface Meteorology and Solar Energy. [online] Available from: https://eosweb. larc. nasa. gov/cgibin/sse/grid. cgi.,2015.
16. O. Perpiñán Lamigueiro, Energía Solar Fotovoltaica. 2011th ed., vol. 2. Creative Commons España: Spain: 2007.
17. Python.org. 2021, February. Welcome to Python.org. [Online] Available from: https://www.python.org/.
18. Python.org. 2021, February. The Python Language Reference — Python 3.9.2 documentation. [online] Available from: https://docs.python.org/3/reference/index.html.

n[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


n[if 1114 equals=”Yes”]n

n[/if 1114]”},{“box”:2,”content”:”

Regular Issue Open Access Article

n

n

n

n

n

Journal of Remote Sensing & GIS

n

[if 344 not_equal=””]ISSN: 2230-7990[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 12
Issue 1
Received March 17, 2020
Accepted April 3, 2021
Published April 28, 2021

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n”},{“box”:6,”content”:”“}]

Read More
JoRSG

Estimation of Dolomite Resources in South Central Part of Anantapur District, Andhra Pradesh, India, Using Geospatial Techniques

[{“box”:0,”content”:”

n

n

 > 

n

n

 > 

n

n

n

n

n

n

n

By [foreach 286]u00a0

u00a0B. Pradeep Kumar, K. Raghu Babu, B. Narayana Swamy, T. Madhu, P. Padma Sree, M. Rajasekhar,

[/foreach]
nJanuary 9, 2023 at 11:54 am

n

nAbstract

n

Dolomite CaMg (Co3)2, is the common rock forming mineral and composed of the carbonates of calcium and magnesium with an equivalent proportion. Dolomite is the primary integral of the sedimentary rock called dolostone and the metamorphic rock called as dolomitic marble. Our method is allowing to confidently determine the location and their boundaries of local geological structures that are likely to contain dolomite resources in the study area of Anantapur, AP, India. Geospatial techniques like Remote Sensing and Geographical Information System are very useful for the estimation of natural resources using the Band rationing techniques.

n

n

n

n

Volume :u00a0u00a012 | Issue :u00a0u00a01 | Received :u00a0u00a0December 17, 2020 | Accepted :u00a0u00a0February 1, 2021 | Published :u00a0u00a0March 2, 2021n[if 424 equals=”Regular Issue”][This article belongs to Journal of Remote Sensing & GIS(jorsg)] [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue Estimation of Dolomite Resources in South Central Part of Anantapur District, Andhra Pradesh, India, Using Geospatial Techniques under section in Journal of Remote Sensing & GIS(jorsg)] [/if 424]
Keywords Band rationing, dolomite, remote sensing and GIS, sedimentary, structures

n

n

n

n

n


n[if 992 equals=”Transformative”]

n

n

Full Text

n

n

n

[/if 992][if 992 not_equal=”Transformative”]

n

n

Full Text

n

n

n

[/if 992] n


nn

[if 379 not_equal=””]n

[foreach 379]n

n[/foreach]

n[/if 379]

n

References

n[if 1104 equals=””]n

1. Abdullah A, Nassr S, Ghaleeb A. Landsat ETM-7 for lineament mapping using automatic extraction technique in the SW part of Taiz Area, Yemen. Global J Human Social Sci. 2013; 13(3): 35–37p.
2. Abdelhamid G, Rabba I. An investigation of mineralized zones revealed during geological mapping, Jabal Hamra Faddan—Wadi Araba, Jordan, using LandsatTM data. Int J Remote Sens. 1994; 15(7): 1495–1506p.
3. Aydogan D. Extraction of lineaments from gravity anomaly maps using the gradient calculation: Application to Central Anatolia. Earth planets space. 2011; 63(8): 903–913p.
4. Banerjee A. Estimation of dolomite formation: Dolomite precipitation and dolomitization. J Geolog Soc India. 2016; 87(5): 561–572p.
5. Friedman GM, Sanders JE. Origin and occurrence of dolostones. In Dev Sedimentol.1967; 9: 267–348p.
6. Kumar BP, Babu KR, Rajasekhar M, et al. Assessment of land degradation and desertification due to migration of sand and sand dunes in Beluguppa Mandal of Anantapur district (AP, India), using remote sensing and GIS techniques. J Ind Geophys Union. 2019; 23(2): 173–180p.
7. Kumar BP, Babu KR, Rajasekhar M, et al. Identification of land degradation hotspots in semiarid region of Anantapur district, Southern India, using geospatial modeling approaches. Model Earth Syst Environ. 2020; 6(3): 1841–1852p.
8. ˆPradeep Kumar B, Raghu Babu K, Rajasekhar M, et al. Change Detection of Land Use/Land Cover using Geospatial Techniques: A Case Study of Narpala Mandal, Anantapur District, Andhra Pradesh, India. J Remote Sens GIS. 2019; 10(2): 6–12p.
9. von Morlot A. Ueber Dolomit und seine künstliche Darstellung aus Kalkstein. Braumüller und Seidel; 1847.
10. Van Tuyl FM. The origin of chert. Am J Sci. 1918; 4(270): 449–456p.

nn[/if 1104] [if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””], [/if 1106]
  2. n[/foreach]

n[/if 1104]

n[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=”Regular Issue”] Regular Issue[/if 424] Open Access Article

n

Editors Overview

jorsg maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

n

“},{“box”:4,”content”:”

n“},{“box”:1,”content”:”

    By  [foreach 286]n

  1. n

    B. Pradeep Kumar, K. Raghu Babu, B. Narayana Swamy, T. Madhu, P. Padma Sree, M. Rajasekhar

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Lecturer, Lecturer, Lecturer, Lecturer, Lecturer, Lecturer,Department of Geology, Yogi Vemana University, Kadapa, Department of Geology, Yogi Vemana University, Kadapa, Department of Geology, Sri Venkateswara University, Tirupathi, Department of Geology, Sri Venkateswara University, Tirupathi, Department of Geology, Government College (A), Anantapur, Department of Geology, Yogi Vemana University, Kadapa,Andhra Pradesh, Andhra Pradesh, Andhra Pradesh, Andhra Pradesh, Andhra Pradesh, Andhra Pradesh,India, India, India, India, India, India
  2. n[/if 1175][/foreach]

n

n

n

n

n

Abstract

nDolomite CaMg (Co3)2, is the common rock forming mineral and composed of the carbonates of calcium and magnesium with an equivalent proportion. Dolomite is the primary integral of the sedimentary rock called dolostone and the metamorphic rock called as dolomitic marble. Our method is allowing to confidently determine the location and their boundaries of local geological structures that are likely to contain dolomite resources in the study area of Anantapur, AP, India. Geospatial techniques like Remote Sensing and Geographical Information System are very useful for the estimation of natural resources using the Band rationing techniques.n

n

n

Keywords: Band rationing, dolomite, remote sensing and GIS, sedimentary, structures

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Remote Sensing & GIS(jorsg)]

n[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Remote Sensing & GIS(jorsg)] [/if 424]

n

n

n


n[if 992 equals=”Transformative”]n

n

n

Full Text

n

n

nn[/if 992]n[if 992 not_equal=”Transformative”]n

n

Full Text

n

n

n

n


[/if 992]n[if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n[/foreach]

n

[/if 379]n

n

References

n[if 1104 equals=””]

1. Abdullah A, Nassr S, Ghaleeb A. Landsat ETM-7 for lineament mapping using automatic extraction technique in the SW part of Taiz Area, Yemen. Global J Human Social Sci. 2013; 13(3): 35–37p.
2. Abdelhamid G, Rabba I. An investigation of mineralized zones revealed during geological mapping, Jabal Hamra Faddan—Wadi Araba, Jordan, using LandsatTM data. Int J Remote Sens. 1994; 15(7): 1495–1506p.
3. Aydogan D. Extraction of lineaments from gravity anomaly maps using the gradient calculation: Application to Central Anatolia. Earth planets space. 2011; 63(8): 903–913p.
4. Banerjee A. Estimation of dolomite formation: Dolomite precipitation and dolomitization. J Geolog Soc India. 2016; 87(5): 561–572p.
5. Friedman GM, Sanders JE. Origin and occurrence of dolostones. In Dev Sedimentol.1967; 9: 267–348p.
6. Kumar BP, Babu KR, Rajasekhar M, et al. Assessment of land degradation and desertification due to migration of sand and sand dunes in Beluguppa Mandal of Anantapur district (AP, India), using remote sensing and GIS techniques. J Ind Geophys Union. 2019; 23(2): 173–180p.
7. Kumar BP, Babu KR, Rajasekhar M, et al. Identification of land degradation hotspots in semiarid region of Anantapur district, Southern India, using geospatial modeling approaches. Model Earth Syst Environ. 2020; 6(3): 1841–1852p.
8. ˆPradeep Kumar B, Raghu Babu K, Rajasekhar M, et al. Change Detection of Land Use/Land Cover using Geospatial Techniques: A Case Study of Narpala Mandal, Anantapur District, Andhra Pradesh, India. J Remote Sens GIS. 2019; 10(2): 6–12p.
9. von Morlot A. Ueber Dolomit und seine künstliche Darstellung aus Kalkstein. Braumüller und Seidel; 1847.
10. Van Tuyl FM. The origin of chert. Am J Sci. 1918; 4(270): 449–456p.

n[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


n[if 1114 equals=”Yes”]n

n[/if 1114]”},{“box”:2,”content”:”

Regular Issue Open Access Article

n

n

n

n

n

Journal of Remote Sensing & GIS

n

[if 344 not_equal=””]ISSN: 2230-7990[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 12
Issue 1
Received December 17, 2020
Accepted February 1, 2021
Published March 2, 2021

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n”},{“box”:6,”content”:”“}]

Read More
JoRSG

Hyperspectral Image Compression and Classification: A Survey

[{“box”:0,”content”:”

n

n

 > 

n

n

 > 

n

n

n

n

n

n

n

By [foreach 286]u00a0

u00a0B. Sucharitha, Nida Zia, Tahereen Rizvi, Syed Diraar Ahmed,

[/foreach]
nJanuary 10, 2023 at 4:40 am

n

nAbstract

n

The applications of hyperspectral images (HSI) are many, which include agriculture, food quality, remote sensing, medical diagnostics and safety assessment. Hyperspectral image analysis has been used for detecting contaminants and identifying defects in food. It also utilizes advanced software and hardware tools hence allowing users to diagnose and detect pathologies. In this paper an avant-garde investigation about Hyperspectral image compression and classification techniques which can be used in various applications like broadcasting of television, remote sensing via satellite, storage and classification of medical images, pictures and documents has been made. Significant increase in multimedia products has created a need to enhance, extract, store and interpret the information received in the most effective manner. The size of a Hyperspectral image comprises approximately 138.81 megabytes and hence requires large space for storage. Hence, Hyperspectral image compression is of great importance as it reduces the data redundancy and the hardware space required for storage. Hyperspectral image classification has gained great research attention due to the increasing demand of feature information extraction. This survey focuses on describing the recent advances in spectral spatial classification of hyperspectral images and various recent advancements in compression techniques for input HSIs.

n

n

n

n

Volume :u00a0u00a013 | Issue :u00a0u00a01 | Received :u00a0u00a0April 25, 2022 | Accepted :u00a0u00a0May 9, 2022 | Published :u00a0u00a0May 23, 2022n[if 424 equals=”Regular Issue”][This article belongs to Journal of Remote Sensing & GIS(jorsg)] [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue Hyperspectral Image Compression and Classification: A Survey under section in Journal of Remote Sensing & GIS(jorsg)] [/if 424]
Keywords Hyperspectral image processing, compression, classification, remote sensing

n

n

n

n

n


n[if 992 equals=”Transformative”]

n

n

Full Text

n

n

n

[/if 992][if 992 not_equal=”Transformative”]

n

n

Full Text

n

n

n

[/if 992] n


nn

[if 379 not_equal=””]n

[foreach 379]n

n[/foreach]

n[/if 379]

n

References

n[if 1104 equals=””]n

1. Gogineni R, Chaturvedi A. Hyperspectral Image Classification. Processing and Analysis of Hyperspectral Data. Book Chapter. Edited. Volume. 2020. doi: 10.5772/intechopen.88925.
2. Khan MJ, Khan HS, Yousaf A, Khurshid K, Abbas A. Modern trends in hyperspectral image analysis: a review. IEEE Access. 2018;6:14118–29. doi: 10.1109/ACCESS.2018.2812999.
3. Sucharitha B, Anithasheela K. Hybrid compression method for hyper spectral images using singular value decomposition and discrete wavelet transform. IEEE International Conference on Intelligent Systems, Smart and Green Technologies (ICISSGT). Nov 13–14 2021; Visakhapatnam, India, US: IEEE Press. Vol. 2022; 2021. doi: 10.1109/ICISSGT52025.2021.00032.
4. Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC. Advances in spectral-spatial classification of hyperspectral images. Proc IEEE. Proceedings of the IEEE. 2013, 101 (3):652–75. doi: 10.1109/JPROC.2012.2197589.
5. Sucharitha B, Ather S. Hyper spectral image compression using fractal compression with arithmetic and Huffman coding, International Journal of Emerging Technologies and Innovative Research. June 2019;6(6):90–5.
6. Ugur Toreyin YB, Yılmaz O, Mert YM, Turk F. Lossless hyperspectral image compression using wavelet transform based spectral decorrelation 7th International Conference on Recent Advances in Space Technologies (RAST). Jun 16–19 2015; Istanbul, Turkey. Vol. 2015. IEEE Publications; 2015. p. 251–4.
7. Xue Jize, Zhao Y, Liao W, Chan JC-W. Nonlocal tensor sparse representation and low-rank regularization for hyperspectral image compressive sensing reconstruction. Remote Sens. 2019;11(2):193. doi: 10.3390/rs11020193.
8. Guerra R, Mar ́, Íaz ́D, Barrios Y, Ópez SL, Sarmiento R. A Hardware-Friendly Algorithm for the on-board Compression of hyperspectral Images 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Sep 23–26 2018; Amsterdam, Netherlands, US. IEEE Publications; 2018. p. 2019.
9. Karami A, Yazdi M, Mercier G. Compression of Hyperspectral Images Using Discrete Wavelet Transform and Tucker Decomposition. IEEE J Sel Top Appl Earth Observations Remote Sensing. April 2012;5(2):444–50. doi: 10.1109/JSTARS.2012.2189200.
10. Masoodhu Banu NM, Sujatha S Et al. Sakib Khan Pathan. Skip Block Based Distrib Source Coding Hyperspectr Image Compression. Multimedia Tools & Applications. 2016;75(18):11267–89.
11. Dua Y, Kumar V, Singh RS. Comprehensive Review of hyperspectral image compression algorithms. Opt Eng. September 2020;59(9). doi: 10.1117/1.OE.59.9.090902.
12. Gunasheela KS, Prasantha HS. Compressive sensing approach to hyperspectral image compression. ICTACT J Image Video Process. August 2018;9(1):1849–56. doi: 10.21917/ijivp.2018.0261.
13. Fu C, Yi Y, Luo F. Hyperspectral image compression based on simultaneous sparse representation and general-pixels. Pattern Recognit Lett. December 2018;116(1):65–71. doi: 10.1016/j.patrec.2018.09.013.
14. Mei S, Khan BM, Zhang Y, Du Q. Low-Complexity hyperspectral Image Compression using folded PCA and JPEG2000. IGARSS 2018- IEEE International Geoscience and Remote Sensing Symposium. July 22–27 2018. Valencia, Spain, US: IEEE Publications.
15. Mamatha AS, Singh V. Lossless hyperspectral image compression based on prediction. 2013 IEEE recent advances in intelligent computational systems (RAICS). 19–21 December 2013. Trivandrum, India, US: IEEE Publications; 2014.
16. Yadav RJ, Nagmode MS. Compression of hyperspectral image using PCA–DCT technology. Lecture Notes in Networks and Systems. 2018;7:269–77. doi: 10.1007/978–981–10–3812–9_28.
17. Guo Y, Han S, Cao H, Zhang Y, Wang Q. Guided filter based Deep Recurrent Neural Networks for hyperspectral Image Classification. Procedia Comput Sci. 2018;129:219–23. doi: 10.1016/j.procs.2018.03.048.
18. Cao Xiangyong, Zhou F, Xu L, Meng D, Xu Z, Paisley J. Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Trans Image Process. May 2018;27(5):2354–67. doi: 10.1109/TIP.2018.2799324, PMID 29470171.
19. Tarabalka Y, Chanussot J, Benediktsson JA. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 2010;43(7):2367–79. doi: 10.1016/j.patcog.2010.01.016.
20. Beirami BA, Mokhtarzade M. Spatial-spectral classification of hyperspectral images based on multiple fractal-based features. Geocarto Int. 2022;37(1):231–45. doi: 10.1080/10106049.2020.1713232.
21. Hasan H, Shafri HZM, Habshi M. A comparison between support vector machine (SVM) and convolutional neural network (CNN) models for hyperspectral image classification. IOP Conf Ser.: Earth Environ Sci. 2019;357(1). doi: 10.1088/1755–1315/357/1/012035.
22. Li Y, Li Junbao, Pan J-S. Hyperspectral image recognition using SVM combined deep learning. J Internet Technol. 2019;20:851–9.
23. Archibald R, Fann G. Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosci Remote Sensing Lett. October 2007;4(4):674–7. doi: 10.1109/LGRS.2007.905116.
24. Liu B, Yu X, Yu A, Zhang P, Wan G. Spectral-spatial classification of hyperspectral imagery based on recurrent neural networks. Remote Sens Lett. 2018;9(12):1118–27. doi: 10.1080/2150704X.2018.1511933.

nn[/if 1104] [if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””], [/if 1106]
  2. n[/foreach]

n[/if 1104]

n[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=”Regular Issue”] Regular Issue[/if 424] Open Access Article

n

Editors Overview

jorsg maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

n

“},{“box”:4,”content”:”

n“},{“box”:1,”content”:”

    By  [foreach 286]n

  1. n

    B. Sucharitha, Nida Zia, Tahereen Rizvi, Syed Diraar Ahmed

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Assistant Professor, Student, Student, Student,Department of Electronics and Communication Engineering, Muffakham Jah College of Engineering and Technology, Department of Electronics and Communication Engineering, Muffakham Jah College of Engineering and Technology, Department of Electronics and Communication Engineering, Muffakham Jah College of Engineering and Technology, Department of Electronics and Communication Engineering, Muffakham Jah College of Engineering and Technology,Hyderabad, Hyderabad, Hyderabad, Hyderabad,India, India, India, India
  2. n[/if 1175][/foreach]

n

n

n

n

n

Abstract

nThe applications of hyperspectral images (HSI) are many, which include agriculture, food quality, remote sensing, medical diagnostics and safety assessment. Hyperspectral image analysis has been used for detecting contaminants and identifying defects in food. It also utilizes advanced software and hardware tools hence allowing users to diagnose and detect pathologies. In this paper an avant-garde investigation about Hyperspectral image compression and classification techniques which can be used in various applications like broadcasting of television, remote sensing via satellite, storage and classification of medical images, pictures and documents has been made. Significant increase in multimedia products has created a need to enhance, extract, store and interpret the information received in the most effective manner. The size of a Hyperspectral image comprises approximately 138.81 megabytes and hence requires large space for storage. Hence, Hyperspectral image compression is of great importance as it reduces the data redundancy and the hardware space required for storage. Hyperspectral image classification has gained great research attention due to the increasing demand of feature information extraction. This survey focuses on describing the recent advances in spectral spatial classification of hyperspectral images and various recent advancements in compression techniques for input HSIs.n

n

n

Keywords: Hyperspectral image processing, compression, classification, remote sensing

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Remote Sensing & GIS(jorsg)]

n[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Remote Sensing & GIS(jorsg)] [/if 424]

n

n

n


n[if 992 equals=”Subscription”]n

n

n

Full Text

n

n

nn[/if 992]n[if 992 not_equal=”Subscription”]n

n

Full Text

n

n

n

n


[/if 992]n[if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n[/foreach]

n

[/if 379]n

n

References

n[if 1104 equals=””]

1. Gogineni R, Chaturvedi A. Hyperspectral Image Classification. Processing and Analysis of Hyperspectral Data. Book Chapter. Edited. Volume. 2020. doi: 10.5772/intechopen.88925.
2. Khan MJ, Khan HS, Yousaf A, Khurshid K, Abbas A. Modern trends in hyperspectral image analysis: a review. IEEE Access. 2018;6:14118–29. doi: 10.1109/ACCESS.2018.2812999.
3. Sucharitha B, Anithasheela K. Hybrid compression method for hyper spectral images using singular value decomposition and discrete wavelet transform. IEEE International Conference on Intelligent Systems, Smart and Green Technologies (ICISSGT). Nov 13–14 2021; Visakhapatnam, India, US: IEEE Press. Vol. 2022; 2021. doi: 10.1109/ICISSGT52025.2021.00032.
4. Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC. Advances in spectral-spatial classification of hyperspectral images. Proc IEEE. Proceedings of the IEEE. 2013, 101 (3):652–75. doi: 10.1109/JPROC.2012.2197589.
5. Sucharitha B, Ather S. Hyper spectral image compression using fractal compression with arithmetic and Huffman coding, International Journal of Emerging Technologies and Innovative Research. June 2019;6(6):90–5.
6. Ugur Toreyin YB, Yılmaz O, Mert YM, Turk F. Lossless hyperspectral image compression using wavelet transform based spectral decorrelation 7th International Conference on Recent Advances in Space Technologies (RAST). Jun 16–19 2015; Istanbul, Turkey. Vol. 2015. IEEE Publications; 2015. p. 251–4.
7. Xue Jize, Zhao Y, Liao W, Chan JC-W. Nonlocal tensor sparse representation and low-rank regularization for hyperspectral image compressive sensing reconstruction. Remote Sens. 2019;11(2):193. doi: 10.3390/rs11020193.
8. Guerra R, Mar ́, Íaz ́D, Barrios Y, Ópez SL, Sarmiento R. A Hardware-Friendly Algorithm for the on-board Compression of hyperspectral Images 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Sep 23–26 2018; Amsterdam, Netherlands, US. IEEE Publications; 2018. p. 2019.
9. Karami A, Yazdi M, Mercier G. Compression of Hyperspectral Images Using Discrete Wavelet Transform and Tucker Decomposition. IEEE J Sel Top Appl Earth Observations Remote Sensing. April 2012;5(2):444–50. doi: 10.1109/JSTARS.2012.2189200.
10. Masoodhu Banu NM, Sujatha S Et al. Sakib Khan Pathan. Skip Block Based Distrib Source Coding Hyperspectr Image Compression. Multimedia Tools & Applications. 2016;75(18):11267–89.
11. Dua Y, Kumar V, Singh RS. Comprehensive Review of hyperspectral image compression algorithms. Opt Eng. September 2020;59(9). doi: 10.1117/1.OE.59.9.090902.
12. Gunasheela KS, Prasantha HS. Compressive sensing approach to hyperspectral image compression. ICTACT J Image Video Process. August 2018;9(1):1849–56. doi: 10.21917/ijivp.2018.0261.
13. Fu C, Yi Y, Luo F. Hyperspectral image compression based on simultaneous sparse representation and general-pixels. Pattern Recognit Lett. December 2018;116(1):65–71. doi: 10.1016/j.patrec.2018.09.013.
14. Mei S, Khan BM, Zhang Y, Du Q. Low-Complexity hyperspectral Image Compression using folded PCA and JPEG2000. IGARSS 2018- IEEE International Geoscience and Remote Sensing Symposium. July 22–27 2018. Valencia, Spain, US: IEEE Publications.
15. Mamatha AS, Singh V. Lossless hyperspectral image compression based on prediction. 2013 IEEE recent advances in intelligent computational systems (RAICS). 19–21 December 2013. Trivandrum, India, US: IEEE Publications; 2014.
16. Yadav RJ, Nagmode MS. Compression of hyperspectral image using PCA–DCT technology. Lecture Notes in Networks and Systems. 2018;7:269–77. doi: 10.1007/978–981–10–3812–9_28.
17. Guo Y, Han S, Cao H, Zhang Y, Wang Q. Guided filter based Deep Recurrent Neural Networks for hyperspectral Image Classification. Procedia Comput Sci. 2018;129:219–23. doi: 10.1016/j.procs.2018.03.048.
18. Cao Xiangyong, Zhou F, Xu L, Meng D, Xu Z, Paisley J. Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Trans Image Process. May 2018;27(5):2354–67. doi: 10.1109/TIP.2018.2799324, PMID 29470171.
19. Tarabalka Y, Chanussot J, Benediktsson JA. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 2010;43(7):2367–79. doi: 10.1016/j.patcog.2010.01.016.
20. Beirami BA, Mokhtarzade M. Spatial-spectral classification of hyperspectral images based on multiple fractal-based features. Geocarto Int. 2022;37(1):231–45. doi: 10.1080/10106049.2020.1713232.
21. Hasan H, Shafri HZM, Habshi M. A comparison between support vector machine (SVM) and convolutional neural network (CNN) models for hyperspectral image classification. IOP Conf Ser.: Earth Environ Sci. 2019;357(1). doi: 10.1088/1755–1315/357/1/012035.
22. Li Y, Li Junbao, Pan J-S. Hyperspectral image recognition using SVM combined deep learning. J Internet Technol. 2019;20:851–9.
23. Archibald R, Fann G. Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosci Remote Sensing Lett. October 2007;4(4):674–7. doi: 10.1109/LGRS.2007.905116.
24. Liu B, Yu X, Yu A, Zhang P, Wan G. Spectral-spatial classification of hyperspectral imagery based on recurrent neural networks. Remote Sens Lett. 2018;9(12):1118–27. doi: 10.1080/2150704X.2018.1511933.

n[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


n[if 1114 equals=”Yes”]n

n[/if 1114]”},{“box”:2,”content”:”

Regular Issue Open Access Article

n

n

n

n

n

Journal of Remote Sensing & GIS

n

[if 344 not_equal=””]ISSN: 2230-7990[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 13
Issue 1
Received April 25, 2022
Accepted May 9, 2022
Published May 23, 2022

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n”},{“box”:6,”content”:”“}]

Read More