[{“box”:0,”content”:”
n
n
[/foreach]
n
n
- [foreach 286] [if 1175 not_equal=””]n
- Professor,Rajshahi University of Engineering & Technology,,Bangladesh
n [/if 1175][/foreach]
n
Abstract
n The present paper aims at comparing the simulated stress-strain behavior of granular materials quantitatively with the experiment and exploring the evolution of the micro-scale behaviors during loading and unloading using the discrete element method (DEM). A numerical sample consisting of 9826 randomly generated spheres similar to the experiment was prepared. The numerically prepared isotropic sample was subjected to loading and unloading under strain controlled condition. It is noticed that the simulated stress-strain behavior agrees well with the experimental stress-strain behavior during loading and unloading. The evolution of micro-scale parameters is studied by varying the maximum applied strain. The evolution pattern of coordination number and slip coordination number depends on the maximum applied strain during loading and unloading. Slip coordination number evolves differently during loading from coordination number, but it evolves in a similar manner during unloading. The ratio of strong contacts to all contacts increases abruptly on reversal of loading, which is opposite to what is observed for coordination number and slip coordination number. The deviatoric fabric considering strong contacts mimics the deviatoric stress regardless of the values of maximum applied strain during loading and unloading. Fabric ratio can be linearly correlated to the stress ratio during loading and unloading regardless of the values of maximum applied strain when the contact normal vectors only at strong contacts are considered.n
n
Keywords: Quantitative validation, Micro-scale quantities, Deviatoric fabric, DEM, Loading and Unloading.
n [if 424 equals=”Regular Issue”][This article belongs to Journal of Geotechnical Engineering(joge)]n
n
n
n
n
n
n
n
Full Text
n [if 992 equals=”Open Access”] nhttps://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/07/9e1d043c-dem-simulation-of-macro-and-micro-joge.pdf [else]nnvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/07/9e1d043c-dem-simulation-of-macro-and-micro-joge.pdf’);n }nelse if (fieldValue == ‘administrator’) { document.write(‘https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/07/9e1d043c-dem-simulation-of-macro-and-micro-joge.pdf’); }n else { document.write(‘ ‘); }nn[/if 992]nn [if 379 not_equal=””]n
Browse Figures
n
n
n [/if 379]n
n Referencesn
n [if 1104 equals=””]n
1. Azéma, E., Radjai, F., Peyroux, R., and Saussine, G. (2007). Force transmission in a packing of pentagonal particles. Physical Review E, 76 (1), 01130. DOI: 10.1103/PhysRevE.76.011301.
2. Azéma, E., Radjai, F., and Saussine, G. (2009). Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mechanics of Materials, 41(6), 729-741. DOI: 10.1016/j.mechmat.2009.01.021.
3. Cui, L. (2006). Developing a virtual test environment for granular materials using discrete element modeling. PhD Thesis, University College Dublin, Ireland.
4. Cui, L., O’Sullivan, C., and O’Neil, S. (2007). An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model.” Geotechnique, 57(10), 831–844, DOI: 10.1680/geot.2007.57.10.831.
5. Cundall, PA., and Strack, ODL. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65. DOI: 10.1680/geot.1979.29.1.47.
6. Jiang, MJ., Yu, H-S., and Harris, D. (2005). A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics, 32(5), 240-357, DOI: 10.1016/j.compgeo.2005.05.001.
7. Kuhn, MR. (1999). Structured deformation in granular materials. Mechanics of Materials, 31(6), 407-429. DOI: 10.1016/S0167-6636(99)00010-1.
8. Kuhn, MR. (2003). Smooth convex three-dimensional particle for the discrete element method. Journal of Engineering Mechanics, 129(5), 539-547. DOI: 10.1061/(ASCE)0733-9399(2003)129:5(539).
9. Kuhn, MR., Renken, HE., Mixsell, AD., and Kramer, SL. (2014). Investigation of cyclic liquefaction with discrete element simulations. Journal of Geotechnical and Geoenvironmental Engineering, 140(12), 1-13. DOI: 10.1061/(ASCE)GT.1943-5606.0001181.
10. Ng, T-T. (2001). Fabric evolution of ellipsoidal arrays with different particle shapes. Journal of Engineering Mechanics, 127(10), 994-999, DOI: 10.1061/(ASCE)0733-9399(2001)127:10(994).
11. Ng, T-T., and Dobry, R. (1994). Numerical simulations of monotonic and cyclic loading of granular soil. Journal of Geotechnical Engineering, 120(2), 388-403. DOI: 10.1061/(ASCE)0733-9410(1994)120:2(388).
12. Nouguier-Lehon, C., Cambou, B., Vincens, E. (2003). “Influence of particle shape and angularity on the behavior of granular materials: a numerical analysis.” International Journal of Numerical Analytical Methods in Geomechanics, 27(14), 1207-1226. DOI: 10.1002/nag.314.
13. Oda, M., Nemat-Nasser, S., and Konishi, J. (1985). Stress-induced anisotropy in granular masses. Soils and Foundations, 25(3), 85-97. DOI: 10.3208/sandf1972.25.3_85.
14. O’Sullivan, C., Bray, J., and Riemer, M. (2004). An examination of the response of regularly packed specimens of spherical particles using physical tests and discrete element simulations. Journal of Engineering Mechanics, 130(10), 1140–1150. DOI: 10.1061/(ASCE)0733-9399(2004)130:10(1140).
15. O’Sullivan, C., Cui, L. and O’Neill, SC. (2008). Discrete element analysis of the response of granular materials during cyclic loading. Soils and Foundations, 48(4), 511-530, DOI: 10.3208/sandf.48.511.
16. Ouadfel, H., and Rothenburg, L. (2001). Stress-force-fabric relationship for assemblies of ellipsoids. Mechanics of Materials, 33(4), 201–221. DOI: 10.1016/S0167-6636(00)00057-0.
17. Radjai, F., Wolf, DE., Jean, M., and Moreau, JJ. (1998). Bimodal character of stress transmission in granular packings. Physical Review Letter, 80(1), 61–64. DOI: 10.1103/PhysRevLett.80.61.
18. Rothenburg, L., and Bathurst, RJ. (1989). Analytical study of induced anisotropy in idealized granular materials. Geotechnique, 39(4), DOI: 601–614, DOI: 10.1680/geot.1989.39.4.601.
19. Sazzad, MM., and Suzuki, K. (2010). Micromechanical behavior of granular materials with inherent anisotropy under cyclic loading using 2D DEM., Granular Matter, 12(6), 597–605, DOI: 10.1007/s10035-010-0200-0.
20. Sazzad, M., and Suzuki, K. (2011). Effect of interparticle friction on the cyclic behavior of granular materials using 2D DEM. Journal of Geotechnical and Geoenvironmental Engineering, 137(5), 545-549. DOI: 10.1061/(ASCE)GT.1943-5606.0000441.
21. Sazzad, MM. (2014). Micro-scale behavior of granular materials during cyclic loading. Particuology, 16, 132-141. DOI: 10.1016/j.partic.2013.12.005.
22. Sazzad, MM., Sayera, K., Shaha, RK., and Islam, MS. (2015). “Macro and micro responses of granular materials under plane strain compression by 3D DEM.”, International Journal of Advanced Structures and Geotechnical Engineering, 4(2), 114-119.
23. Sazzad, MM. (2016). Micro-scale responses of granular materials at different confining pressures using DEM. Acta Geotechnica. Slovenica, 13(1), 26-36.
24. Sazzad, MM., Sneha, E., and Rouf, RB. (2017). Comparison of stress-stain behavior of CTC test using DEM simulation. International Conference on Planning, Architecture and Civil Engineering, Bangladesh, pp. 194-199.
25. Sazzad, MM (2019) Effect of intermediate principal stress on the behavior of granular materials at a low mean stress by DEM. Geotechnical and Geological Engineering, 37(5), DOI: 4539–4550. DOI: 10.1007/s10706-019-00929-7 .
26. Yang, Y., Fei, W., Yu., H-S., Ooi, J., and Rotter, M. (2015). Experimental study of anisotropy and non-coaxiality of granular solids, Granular Matter, 17(2), 189–196. DOI: 10.1007/s10035-015-0551-7.
nn [/if 1104][if 1104 not_equal=””]n
- [foreach 1102]n
- [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/ifn 1106]
n [/foreach]n
n [/if 1104]n
nn
n [if 1114 equals=”Yes”]n
n [/if 1114]nnn
n
n
n
Volume | 09 |
Issue | 01 |
Received | March 3, 2022 |
Accepted | March 21, 2022 |
Published | March 30, 2022 |
n
n
n
n
n [/foreach]n
n [/if 1190] [if 1177 not_equal=””]n
n
n [/foreach]n
n [/if 1177]n
n
n
nn
nn function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }nnn function myfun() {n x = document.getElementById(“editor”);n y = document.getElementById(“down”);n z = document.getElementById(“up”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n function myfun2() {n x = document.getElementById(“reviewer”);n y = document.getElementById(“down2”);n z = document.getElementById(“up2”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n”}]