Fabrication, Numerical Simulation and Compact Modeling of Ph-BTBT-C10 Organic Thin Film Transistor

Open Access

Year : 2024 | Volume : | : | Page : –
By

Shubham Dadhich,

Vivek Upadhyay,

Garima Mathur,

  1. Research Scholar Department of Electrical and Electronics Engineering, Poornima University Jaipur, Vidhani Rajasthan India
  2. Assistant Professor Department of Electrical and Electronics Engineering, Poornima University Jaipur, Vidhani Rajasthan India
  3. Professor Department of Electrical and Electronics Engineering, Poornima University Jaipur, Vidhani Rajasthan India

Abstract

Flexible and cost-effective electronics have been necessitated by the advent of organic thin-film transistors (OTFTs). This study aims to study the performance of OTFT using a 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C10) organic semiconductor. The paper also explore accurate device modeling for technology optimization and circuit design that supports device improvement. This research includes device fabrication, numerical simulation using TCAD, compact modeling, and parameter extraction. By combining temperature-dependent bandgap narrowing with existing theories, this model can more accurately predict changes in the bandgap with respect to temperature which is critical in designing advanced semiconductor devices. The electrical behaviour of the device can be accurately simulated by refining the other equations related to semiconductors. The experimental data were compared with the results from ATLAS simulations and compact modelling. In addition, the study consists of simulating a P-type TFT-based inverter to evaluate its performance as applied to basic circuit applications using the compact model.

Keywords: Ph-BTBT-C10, Device Modeling, Compact Modeling, SMART SPICE, Device Physics, Density of States

How to cite this article: Shubham Dadhich, Vivek Upadhyay, Garima Mathur. Fabrication, Numerical Simulation and Compact Modeling of Ph-BTBT-C10 Organic Thin Film Transistor. Journal of Polymer and Composites. 2024; ():-.
How to cite this URL: Shubham Dadhich, Vivek Upadhyay, Garima Mathur. Fabrication, Numerical Simulation and Compact Modeling of Ph-BTBT-C10 Organic Thin Film Transistor. Journal of Polymer and Composites. 2024; ():-. Available from: https://journals.stmjournals.com/jopc/article=2024/view=156433

Full Text PDF Download


References

[1]        Szymanski, M. Z.; D. Tu; R. Forchheimer. 2-D Drift-Diffusion Simulation of Organic Electrochemical Transistors. IEEE Trans. Electron Devices 2017; 64 (12):5114–5120. https://doi.org/10.1109/TED.2017.2757766.

[2]        Mizukami, M.; S. Oku; S.-I. Cho et al. A Solution-Processed Organic Thin-Film Transistor Backplane for Flexible Multiphoton Emission Organic Light-Emitting Diode Displays. IEEE Electron Device Lett. 2015; 36 (8):841–843. https://doi.org/10.1109/LED.2015.2443184.

[3]        Becharguia, H.; M. Mahdouani; R. Bourguiga et al. Effects of Illumination on the Electrical Characteristics in Organic Thin-Film Transistors Based on Dinaphtho [2,3-b:2′,3′-f] Thieno[3,2-b] Thiophene (DNTT): Experiment and Modeling. Synthetic Metals 2022; 283:116985. https://doi.org/10.1016/j.synthmet.2021.116985.

[4]        Zimmermann, J.; D. Merten; J. Finke et al. Scalable Fabrication of Cross-Plane Thin-Film Thermoelectric Generators on Organic Substrates. Thin Solid Films 2021; 734:138850. https://doi.org/10.1016/j.tsf.2021.138850.

[5]        Lim, B. W.; H. S. Jeon; M. C. Suh. Top-Emission Organic Light Emitting Diodes with Lower Viewing Angle Dependence. Synthetic Metals 2014; 189:57–62. https://doi.org/10.1016/j.synthmet.2013.12.020.

[6]        Chen, L.; H. Gu; S. Jiao et al. Optical Modeling and Analysis of Pixel Organic Light-Emitting Diode Using a Mixed-Level Algorithm Considering Light Leakage Effects. Thin Solid Films 2023; 769:139741. https://doi.org/10.1016/j.tsf.2023.139741.

[7]        Chu, H.; N. Wei; B. Yu et al. A Mirrored 5T1C OLED Pixel Circuit for Compensating Characteristics Variations and Voltage Drop. Microelectronics Journal 2023; 131:105645. https://doi.org/10.1016/j.mejo.2022.105645.

[8]        Shen, F.; S. Arshi; E. Magner et al. One-Step Electrochemical Approach of Enzyme Immobilization for Bioelectrochemical Applications. Synthetic Metals 2022; 291:117205. https://doi.org/10.1016/j.synthmet.2022.117205.

[9]        Radaoui, M.; A. Ben Fredj; S. Romdhane et al. New Conjugated Polymer/Fullerene Nanocomposite for Energy Storage and Organic Solar Cell Devices: Studies of the Impedance Spectroscopy and Dielectric Properties. Synthetic Metals 2022; 283:116987. https://doi.org/10.1016/j.synthmet.2021.116987.

[10]      Chang, L.; M. Sheng; L. Duan et al. Ternary Organic Solar Cells Based on Non-Fullerene Acceptors: A Review. Organic Electronics 2021; 90:106063. https://doi.org/10.1016/j.orgel.2021.106063.

[11]      Zhu, Y.; X. Xing; Z. Liu et al. A Step towards the Application of Molecular Plasmonic-like Excitations of PAH Derivatives in Organic Electrochromics. Chinese Chemical Letters 2023; 34 (2):107550. https://doi.org/10.1016/j.cclet.2022.05.064.

[12]      Ajayan, J.; D. Nirmal; B. K. Jebalin I.V et al. Advances in Neuromorphic Devices for the Hardware Implementation of Neuromorphic Computing Systems for Future Artificial Intelligence Applications: A Critical Review. Microelectronics Journal 2022; 130:105634. https://doi.org/10.1016/j.mejo.2022.105634.

[13]      Nanova, D. Academia and Industry United. Nature Nanotech 2016; 11 (3):304–304. https://doi.org/10.1038/nnano.2016.27.

[14]      Darwish, M.; A. Gagliardi. A Drift-Diffusion Simulation Model for Organic Field Effect Transistors: On the Importance of the Gaussian Density of States and Traps. J. Phys. D: Appl. Phys. 2020; 53 (10):105102. https://doi.org/10.1088/1361-6463/ab605d.

[15]      Erlen, C.; P. Lugli. Analytical Model of Trapping Effects in Organic Thin-Film Transistors. IEEE Trans. Electron Devices 2009; 56 (4):546–552. https://doi.org/10.1109/TED.2008.2011936.

[16]      Lin, Y.-J. Leakage Conduction Mechanism of Top-Contact Organic Thin Film Transistors. Synthetic Metals 2010; 160 (23–24):2628–2630. https://doi.org/10.1016/j.synthmet.2010.10.015.

[17]      Nair, S.; M. Kathiresan; T. Mukundan. Two Dimensional Simulation of Patternable Conducting Polymer Electrode Based Organic Thin Film Transistor. Semiconductor Science and Technology 2018; 33 (2):025006. https://doi.org/10.1088/1361-6641/aaa223.

[18]      Popescu, D.; B. Popescu; M. Brandlein et al. Modeling of Electrolyte-Gated Organic Thin-Film Transistors for Sensing Applications. IEEE Trans. Electron Devices 2015; 62 (12):4206–4212. https://doi.org/10.1109/TED.2015.2485160.

[19]      Sivalertporn, K.; T. Osotchan. Hopping and Drift–Diffusion Currents in Organic Devices. In 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems IEEE: Bangkok, 2007; 830–833. https://doi.org/10.1109/NEMS.2007.352146.

[20]      Rossi, D.; F. Santoni; M. Auf Der Maur et al. A Multiparticle Drift-Diffusion Model and Its Application to Organic and Inorganic Electronic Device Simulation. IEEE Trans. Electron Devices 2019; 66 (6):2715–2722. https://doi.org/10.1109/TED.2019.2912521.

[21]      Kaimakamis, T.; M. Bucher; M. Gioti et al. TCAD Simulation of Organic Field-Effect Transistors Based on Spray-Coated Small Molecule Organic Semiconductor with an Insulating Polymer Blend. Organic Electronics 2023; 119:106812. https://doi.org/10.1016/j.orgel.2023.106812.

[22]      Introduction to Liquid Crystalline Polymers | SpringerLink. https://link.springer.com/referenceworkentry/10.1007/978-3-642-37179-0_49-1 (accessed 2023-10-18).

[23]      Wang, Y.; Q. Zeng; X. Du et al. The Structural, Mechanical and Electronic Properties of Novel Superhard Carbon Allotropes: Ab Initio Study. Materials Today Communications 2021; 29:102980. https://doi.org/10.1016/j.mtcomm.2021.102980.

[24]      Nayak, P. K.; N. Periasamy. Calculation of Electron Affinity, Ionization Potential, Transport Gap, Optical Band Gap and Exciton Binding Energy of Organic Solids Using ‘Solvation’ Model and DFT. Organic Electronics 2009; 10 (7):1396–1400. https://doi.org/10.1016/j.orgel.2009.06.011.

[25]      Hiramoto, M.; M. Kubo; Y. Shinmura et al. Bandgap Science for Organic Solar Cells. Electronics 2014; 3 (2):351–380. https://doi.org/10.3390/electronics3020351.

[26]      Singh, Th. B.; F. Meghdadi; S. Günes et al. High-Performance Ambipolar Pentacene Organic Field-Effect Transistors on Poly(Vinyl Alcohol) Organic Gate Dielectric. Adv. Mater. 2005; 17 (19):2315–2320. https://doi.org/10.1002/adma.200501109.

[27]      Kim, Y.; M. Bae; W. Kim et al. Amorphous InGaZnO Thin-Film Transistors—Part I: Complete Extraction of Density of States Over the Full Subband-Gap Energy Range. IEEE Trans. Electron Devices 2012; 59 (10):2689–2698. https://doi.org/10.1109/TED.2012.2208969.

[28]      Zannoni, A. On the Quantization of the Monoatomic Ideal Gas. arXiv December 13, 1999. http://arxiv.org/abs/cond-mat/9912229 (accessed 2023-10-18).

[29]      Mohammad, S. N. Fermi Energy and Fermi-Dirac Integrals for Zincblende-Symmetry Narrow-Gap Semiconductors with Spherical Energy Bands. J. Phys. C: Solid State Phys. 1980; 13 (14):2685. https://doi.org/10.1088/0022-3719/13/14/010.

[30]      Bouhassoune, M.; S. L. M. van Mensfoort; P. A. Bobbert et al. Carrier-Density and Field-Dependent Charge-Carrier Mobility in Organic Semiconductors with Correlated Gaussian Disorder. Organic Electronics 2009; 10 (3):437–445. https://doi.org/10.1016/j.orgel.2009.01.005.

[31]      Bronstein, H.; C. B. Nielsen; B. C. Schroeder et al. The Role of Chemical Design in the Performance of Organic Semiconductors. Nat Rev Chem 2020; 4 (2):66–77. https://doi.org/10.1038/s41570-019-0152-9.

[32]      Hack, M.; J. G. Shaw; P. G. LeComber et al. Numerical Simulations of Amorphous and Polycrystalline Silicon Thin-Film Transistors. Jpn. J. Appl. Phys. 1990; 29 (12A):L2360. https://doi.org/10.1143/JJAP.29.L2360.

[33]      Kemp, M.; M. Meunier; C. G. Tannous. Simulation of the Amorphous Silicon Static Induction Transistor. Solid-State Electronics 1989; 32 (2):149–157. https://doi.org/10.1016/0038-1101(89)90182-2.

[34]      Salzmann, I.; G. Heimel; M. Oehzelt et al. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. Acc. Chem. Res. 2016; 49 (3):370–378. https://doi.org/10.1021/acs.accounts.5b00438.

[35]      Belykh, S. F.; V. V. Palitsin; A. Adriaens et al. Effect of the Relaxation of the Electron Subsystem Excitation in Metals on the Ionization Probability of Sputtered Atoms. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2003; 203:172–177. https://doi.org/10.1016/S0168-583X(02)02213-9.

[36]      Kastalsky, A. A.; M. S. Shur. Conductance of Small Semiconductor Devices. Solid State Communications 1981; 39 (6):715–718. https://doi.org/10.1016/0038-1098(81)90442-7.

[37]      Cuevas, A. The Recombination Parameter J0. Energy Procedia 2014; 55:53–62. https://doi.org/10.1016/j.egypro.2014.08.073.

[38]      Gueorguiev, V. K.; Tz. E. Ivanov; C. A. Dimitriadis et al. Electron Trapping Probabilities in Hydrogen Ion Implanted Silicon Dioxide Films Thermally Grown on Polycrystalline Silicon. Microelectronics Journal 2000; 31 (3):207–211. https://doi.org/10.1016/S0026-2692(99)00137-8.

[39]      Tien-Lung Chiu; Hsin-Jen Chen; Yu-Hsiang Hung et al. Structural Optimizing Carrier Recombination for Efficient Blue Phosphorescence Organic Light-Emitting Diode With Ambipolar Host. IEEE J. Select. Topics Quantum Electron. 2016; 22 (1):54–59. https://doi.org/10.1109/JSTQE.2015.2480375.

[40]      Arkhipov, V. I.; P. Heremans; E. V. Emelianova et al. Charge Carrier Mobility in Doped Semiconducting Polymers. Appl. Phys. Lett. 2003; 82 (19):3245–3247. https://doi.org/10.1063/1.1572965.

[41]      Khemissi, S.; N. Merabtine; C. Azizi et al. An Analytical Model for the Transconductance and Drain Conductance of GaAs MESFETs. In 2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD) 2010; 1–5. https://doi.org/10.1109/SM2ACD.2010.5672292.

[42]      Estrada, M.; A. Cerdeira; I. Mejia et al. Modeling the Behavior of Charge Carrier Mobility with Temperature in Thin-Film Polymeric Transistors. Microelectronic Engineering 2010; 87 (12):2565–2570. https://doi.org/10.1016/j.mee.2010.07.018.

[43]      Cerdeira, A.; M. Estrada; B. S. Soto-Cruz et al. Modeling the Behavior of Amorphous Oxide Thin Film Transistors before and after Bias Stress. Microelectronics Reliability 2012; 52 (11):2532–2536. https://doi.org/10.1016/j.microrel.2012.04.017.

[44]      Estrada, M.; I. Mejía; A. Cerdeira et al. Mobility Model for Compact Device Modeling of OTFTs Made with Different Materials. Solid-State Electronics 2008; 52 (5):787–794. https://doi.org/10.1016/j.sse.2007.11.007.

[45]      Iñiguez, B.; R. Picos; D. Veksler et al. Universal Compact Model for Long- and Short-Channel Thin-Film Transistors. Solid-State Electronics 2008; 52 (3):400–405. https://doi.org/10.1016/j.sse.2007.10.027.


Ahead of Print Open Access Review Article
Volume
Received June 20, 2024
Accepted July 8, 2024
Published July 12, 2024