Review on Computer-Aided Drug Design in RAS Inhibitor Discovery

Year : 2024 | Volume : | : | Page : –
By

Satish kumar Yadav,

Mohd. Wasiullah,

Piyush Yadav,

Alqama Zehra,

Mr. Sushil Yadav,

  1. Associate professor, Department of Pharmacy Prasad Institute of Technology, Jaunpur Uttar Pradesh India
  2. Principal ,Department of Pharmacy Prasad Institute of Technology, Jaunpur Uttar Pradesh India
  3. Academic Head, Department Of Pharmacy Prasad Institute of Technology, Jaunpur Uttar Pradesh India
  4. Research Scholar, Department of Pharmacy Prasad Institute of Technology, Jaunpur Uttar Pradesh India
  5. Lecturer, Department of Pharmacy Prasad Institute of Technology, Jaunpur Uttar Pradesh India

Abstract

This review explores the utilization of computer-aided drug design (CADD) methodologies in the discovery of inhibitors targeting the RAS pathway, a pivotal signaling cascade implicated in various cancers. Through an extensive examination of computational tools, methodologies, challenges, and recent advancements, this review aims to provide insights into the role of CADD in accelerating RAS inhibitor discovery. The discovery of effective inhibitors targeting the RAS pathway is of paramount importance in cancer therapeutics, given the critical role of RAS proteins in oncogenesis. Computer-aided drug design (CADD) methodologies have emerged as indispensable tools in accelerating the identification and optimization of RAS inhibitors. This review provides a comprehensive overview of the applications of CADD in RAS inhibitor discovery, encompassing molecular modeling, virtual screening, machine learning, and structural biology techniques. Through an exploration of recent advancements, challenges, and opportunities in the field, this review aims to elucidate the potential of CADD in driving innovation and accelerating the development of novel therapeutics for RAS-driven cancers

Keywords: RAS pathway, Computer-aided drug design (CADD), RAS inhibitors, Molecular modelling, Virtual screening, Machine learning, Structural biology, Cancer therapeutics, Precision oncology, Drug discovery

How to cite this article: Satish kumar Yadav, Mohd. Wasiullah, Piyush Yadav, Alqama Zehra, Mr. Sushil Yadav. Review on Computer-Aided Drug Design in RAS Inhibitor Discovery. International Journal of Pathogens. 2024; ():-.
How to cite this URL: Satish kumar Yadav, Mohd. Wasiullah, Piyush Yadav, Alqama Zehra, Mr. Sushil Yadav. Review on Computer-Aided Drug Design in RAS Inhibitor Discovery. International Journal of Pathogens. 2024; ():-. Available from: https://journals.stmjournals.com/ijpg/article=2024/view=155698



References

  1. Kanwal, S.; Jamil, F.; Ali, A.; Sehgal, S.A. Comparative Modeling, Molecular Docking, and Revealing of Potential Binding Pockets of RASSF2; a Candidate Cancer Gene. Interdiscip. Sci. 2017, 9, 214–223.
  2. Collier, T.A.; Piggot, T.J.; Allison, J.R. Molecular Dynamics Simulation of Proteins. Methods Mol. Biol. 2020, 2073, 311–327.
  3. Prakash, P.; Sayyed-Ahmad, A.; Cho, K.J.; Dolino, D.M.; Chen, W.; Li, H.; Grant, B.J.; Hancock, J.F.; Gorfe, A.A. Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers. Sci. Rep. 2017, 7, 40109.
  4. Tuncbag, N.; Gursoy, A.; Nussinov, R.; Keskin, O. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat. Protoc. 2011, 6, 1341–1354.
  5. Muratcioglu, S.; Chavan, T.S.; Freed, B.C.; Jang, H.; Khavrutskii, L.; Freed, R.N.; Dyba, M.A.; Stefanisko, K.; Tarasov, S.G.; Gursoy, A.; et al. GTP-Dependent K-Ras Dimerization. Structure 2015, 23, 1325–1335.
  6. Jisna, V.A.; Jayaraj, P.B. Protein Structure Prediction: Conventional and Deep Learning Perspectives. Protein J. 2021, 40, 522–544.
  7. Li, L.; Meyer, C.; Zhou, Z.-W.; Elmezayen, A.; Westover, K. Therapeutic Targeting the Allosteric Cysteinome of RAS and Kinase Families. J. Mol. Biol. 2022, 434, 167626.
  8. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Zídek, A.; Nelson, A.W.R.; Bridgland, A.; et al.Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710.
  9. Bhaskar, B.V.; Rammohan, A.; Babu, T.M.; Zheng, G.Y.; Chen, W.; Rajendra, W.; Zyryanov, G.V.; Gu, W. Molecular insight into isoform specific inhibition of PI3K-alpha and PKC-eta with dietary agents through an ensemble pharmacophore and docking studies. Sci. Rep. 2021, 11, 12150.
  10. Parca, L.; Mangone, I.; Gherardini, P.F.; Ausiello, G.; Helmer-Citterich, M. Phosfinder: A web server for the identification of phosphate-binding sites on protein structures. Nucleic Acids Res. 2011, 39, W278–W282.
  11. Singh, H.; Srivastava, H.K.; Raghava, G.P. A web server for analysis, comparison and prediction of protein ligand binding sites. Biol. Direct 2016, 11, 14.
  12. Hernandez, M.; Ghersi, D.; Sanchez, R. SITEHOUND-web: A server for ligand binding site identification in protein structures. Nucleic Acids Res. 2009, 37, W413–W416.
  13. Konc, J.; Skrlj, B.; Erzen, N.; Kunej, T.; Janezic, D. GenProBiS: Web server for mapping of sequence variants to protein binding sites. Nucleic Acids Res. 2017, 45, W253–W259.
  14. Wang, Y.; Lupala, C.S.; Liu, H.; Lin, X. Identification of Drug Binding Sites and Action Mechanisms with Molecular Dynamics Simulations. Curr. Top. Med. Chem. 2018, 18, 2268–2277.
  15. Cox, A. D., & Der, C. J. (2010). Ras history: The saga continues. Small GTPases, 1(1), 2-27.
  16. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A., & Shokat, K. M. (2013). K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 503(7477), 548-551.
  17. Canon, J., Rex, K., Saiki, A. Y., Mohr, C., Cooke, K., Bagal, D., … & Lau, K. (2019). The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 575(7781), 217-223.
  18. Hunter, J. C., Manandhar, A., Carrasco, M. A., Gurbani, D., Gondi, S., Westover, K. D., & Biochemical, cellular, and biophysical characterization of a potent inhibitor of mutant isocitrate dehydrogenase IDH1. Journal of Biological Chemistry, 292(7), 331-345.
  19. Zimmermann, G., Papke, B., Ismail, S., Vartak, N., Chandra, A., Hoffmann, M., … & Bastiaens, P. I. (2013). Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature, 497(7451), 638-642.
  20. Bhattacharya, S., Dunn, S. J., Baker, E. N., & Lyall, V. (2018). Learning from drug binding: Combining supervised and unsupervised learning for ligand binding prediction. Journal of Computational Chemistry, 39(7), 374-382.
  21. Zhu, S., Pabis, A., Pagratis, M., Beman, M., Hwang, Y. C., Lee, J. H., … & Lipkin, S. M. (2019). Machine learning reveals bilateral distribution of somatic L1 insertions in human cancers. BMC Bioinformatics, 20(1), 1-11.
  22. Berne, B. J., Friesner, R. A., Cao, Y., & Murphy, R. B. (2017). An adaptive multilevel splitting method for computing free energies and exploring energy landscapes. The Journal of Chemical Physics, 146(14), 144110.
  23. Durrant, J. D., McCammon, J. A., & Wolan, D. W. (2011). High-throughput virtual screening with AutoDock Vina. Journal of Chemical Information and Modeling, 51(8), 2024-2035.

Ahead of Print Subscription Review Article
Volume
Received May 10, 2024
Accepted May 14, 2024
Published July 9, 2024