Prediction and Evaluation of PV Panel Performance for Low Solar Radiation Concentration and Variable Topology

Year : 2024 | Volume :14 | Issue : 03 | Page : 41-50
By

C. Armenta -Déu,

Juan Aguirre,

  1. Faculty,, Complutense University of Madrid,, Madrid,, Spain
  2. Faculty,, Complutense University of Madrid,, Madrid,, Spain

Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_105411’);});Edit Abstract & Keyword

This paper studies and analyzes the performance of photovoltaic panels for a flat-side mirror solar radiation low-concentration design. The system consists of two side mirrors concentrating surface that reflects solar radiation onto the PV panel area, increasing the solar radiation flux up to 177% regarding solar radiation peak at the Earth’s surface. Three PV panel configurations are analyzed: conventional, a photovoltaic panel with attached Phase Change Material (PV-PCM), and a photovoltaic panel with PCM and heat sink (PV-PCM-HS). For a classical configuration operating under concentrated solar radiation, the power increases by 79.4%. If we remove generated heat using a Phase Change Material (PCM) or PCM and heat sink, the power rises to 115.7% and 152.2%. The paper develops a new method to predict PV panel output power for variable solar concentration and configurations within 95% minimum agreement. The evaluation of PV panel output power using the developed theoretical algorithm is within 98.6% accuracy, on average.

Keywords: Concentrated solar radiation; Photovoltaic panel performance; Power increase; Efficiency improvement; Electric and heat generation.

[This article belongs to Trends in Electrical Engineering (tee)]

How to cite this article:
C. Armenta -Déu, Juan Aguirre. Prediction and Evaluation of PV Panel Performance for Low Solar Radiation Concentration and Variable Topology. Trends in Electrical Engineering. 2024; 14(03):41-50.
How to cite this URL:
C. Armenta -Déu, Juan Aguirre. Prediction and Evaluation of PV Panel Performance for Low Solar Radiation Concentration and Variable Topology. Trends in Electrical Engineering. 2024; 14(03):41-50. Available from: https://journals.stmjournals.com/tee/article=2024/view=0

Full Text PDF

References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_105411’);});Edit

Karakaya, E., & Sriwannawit, P. (2015). Barriers to the adoption of photovoltaic systems: The state of the art. Renewable and Sustainable Energy Reviews, 49, 60-66. [2] Agathokleous, R. A., & Kalogirou, S. A. (2020). Status, barriers and perspectives of building integrated photovoltaic systems. Energy, 191, 116471. [3] Nurwidiana, N. (2023). Barriers to Adoption of Photovoltaic System: A case study from Indonesia. Journal of Industrial Engineering and Education, 1(1), 80-89. [4] Lo, K., Mah, D. N. Y., Wang, G., Leung, M. K., Lo, A. Y., & Hills, P. (2018). Barriers to adopting solar photovoltaic systems in Hong Kong. Energy & environment, 29(5), 649-663. [5] Manju, S., & Sagar, N. (2017). Progressing towards the development of sustainable energy: A critical review on the current status, applications, developmental barriers and prospects of solar photovoltaic systems in India. Renewable and Sustainable Energy Reviews, 70, 298-313. [6] Singh, G. K. (2013). Solar power generation by PV (photovoltaic) technology: A review. Energy, 53, 1-13. [7] Tyagi, V. V., Rahim, N. A., Rahim, N. A., Jeyraj, A., & Selvaraj, L. (2013). Progress in solar PV technology: Research and achievement. Renewable and sustainable energy reviews, 20, 443-461. [8] Parida, B., Iniyan, S., & Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 15(3), 1625-1636. [9] Razykov, T. M., Ferekides, C. S., Morel, D., Stefanakos, E., Ullal, H. S., & Upadhyaya, H. M. (2011). Solar photovoltaic electricity: Current status and future prospects. Solar energy, 85(8), 1580-1608. [10] Shanks, K., Senthilarasu, S., & Mallick, T. K. (2015). High-concentration optics for photovoltaic applications. High concentrator photovoltaics: fundamentals, engineering and power plants, 85-113. [11] Fernández-Reche, J., Cañadas, I., Sánchez, M., Ballestrín, J., Yebra, L., Monterreal, R., … & Chenlo, F. (2006). PSA Solar furnace: A facility for testing PV cells under concentrated solar radiation. Solar energy materials and solar cells, 90(15), 2480-2488. [12] Pedro Pérez-Higueras, Juan P. Ferrer-Rodríguez, Florencia Almonacid, Eduardo F. Fernández, Efficiency and acceptance angle of High Concentrator Photovoltaic modules: Current status and indoor measurements, Renewable and Sustainable Energy Reviews, Volume 94, 2018, Pages 143-153, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2018.06.011. (https://www.sciencedirect.com/science/article/pii/S1364032118304453) [13] Hadavinia, H., & Singh, H. (2019). Modelling and experimental analysis of low concentrating solar panels for use in building integrated and applied photovoltaic (BIPV/BAPV) systems. Renewable energy, 139, 815-829. [14] Chemisana, D. (2011). Building integrated concentrating photovoltaics: a review. Renewable and sustainable energy reviews, 15(1), 603-611. [15] Chemisana, D., Ibáñez, M., & Barrau, J. (2009). Comparison of Fresnel concentrators for building integrated photovoltaics. Energy Conversion and Management, 50(4), 1079-1084. [16] Baig, H., Heasman, K. C., & Mallick, T. K. (2012). Non-uniform illumination in concentrating solar cells. Renewable and Sustainable Energy Reviews, 16(8), 5890-5909. [17] Amanlou, Y., Hashjin, T. T., Ghobadian, B., Najafi, G., & Mamat, R. (2016). A comprehensive review of uniform solar illumination at low concentration photovoltaic (LCPV) systems. Renewable and Sustainable Energy Reviews, 60, 1430-1441. [18] Jahanfar, A., Drake, J., Sleep, B., & Margolis, L. (2019). Evaluating the shading effect of photovoltaic panels on green roof discharge reduction and plant growth. Journal of Hydrology, 568, 919-928. [19] Bernadette, D., Twizerimana, M., Bakundukize, A., Pierre, B. J., & Theoneste, N. (2021). Analysis of shading effects in solar PV system. Int. J. Sustain. Green Energy, 10(2), 47-62. [20] Bayrak, F., Ertürk, G., & Oztop, H. F. (2017). Effects of partial shading on energy and exergy efficiencies for photovoltaic panels. Journal of cleaner production, 164, 58-69. [21] Mandalaki, M., Papantoniou, S., & Tsoutsos, T. (2014). Assessment of energy production from photovoltaic modules integrated in typical shading devices. Sustainable Cities and Society, 10, 222-231. [22] Xu, S., Zhu, Q., Hu, Y., & Zhang, T. (2022). Design and performance research of a new non-tracking low concentrating with lens for photovoltaic systems. Renewable Energy, 192, 174-187. [23] Mallick, T. K., & Eames, P. C. (2008). Electrical performance evaluation of low‐concentrating non‐imaging photovoltaic concentrator. Progress in Photovoltaics: Research and Applications, 16(5), 389-398. [24] Chong, K. K., Siaw, F. L., Wong, C. W., & Wong, G. S. (2009). Design and construction of non-imaging planar concentrator for concentrator photovoltaic system. Renewable Energy, 34(5), 1364-1370. [25] Andrews, R. W., Pollard, A., & Pearce, J. M. (2013, June). Photovoltaic system performance enhancement with non-tracking planar concentrators: Experimental results and BDRF based modelling. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (pp. 0229-0234). IEEE. [26] Buni, M. J., Al-Walie, A. A., & Al-Asadi, K. A. (2018). Effect of solar radiation on photovoltaic cell. International Research Journal of Advanced Engineering and Science, 3(3), 47-51. [27] Amelia, A. R., Irwan, Y. M., Leow, W. Z., Irwanto, M., Safwati, I., & Zhafarina, M. (2016). Investigation of the effect temperature on photovoltaic (PV) panel output performance. Int. J. Adv. Sci. Eng. Inf. Technol, 6(5), 682-688. [28] Armenta-Déu, C. (2021) Analysis of the Performance of a PV-PCM System in variable Solar Radiation conditions. Journal of Alternate Energy Sources & Technology, Volume 12, Issue 1, pages 1-20 https://doi.or/10.37591/joaest.v12i1.4423 [29] Solar Engineering of Thermal Processes. Third Edition. John A. Duffie and William A. Beckman. John Wiley and Sons. New York, NY (USA) [30] Armenta-Déu, C. (2023) Compact PV-PCM System with Heat Recovery Unit for Cogeneration System. Journal of Alternate Energy Sources & Technologies, Volume 14, Issue 1, pages 13-24


Regular Issue Subscription Original Research
Volume 14
Issue 03
Received August 20, 2024
Accepted August 27, 2024
Published September 30, 2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.