Cogeneration System in Concentrated Photovoltaic Panels

Year : 2024 | Volume :11 | Issue : 02 | Page : 1-14
By

C. Armenta -Déu,

  1. Faculty, Department of Physics Complutense University, Madrid (Spain)

Abstract

This study analyses the behavior of hybrid systems composed of photovoltaic panels (PV) and phase-change materials (PCM) under solar concentration conditions, aiming to generate electric and thermal energy in water simultaneously (cogeneration). This work looks for system performance improvement while increasing the generated power and energy by the PV panel and the thermal system in unison. The study shows the increase in power and energy delivered by the prototype compared to the power supply by conventional configuration without solar concentration. Likewise, the work evaluates the PV panel’s electric energy efficiency and the thermal system performance as a single and combined system. The hybrid PV-PCM-heat exchanger system operates in high-efficiency mode, with typical performance up to 2.1 times higher for the PV panel and 107% more global energy generation. The hybrid system coefficient of performance (COP) evolves from a minimum of 1.017 for standard solar concentration ratio (Cx=1) to a maximum of 1.283 for Cx=3.0; the COP value may rise to 3.5 for solar concentration ratio of 20, matching the performance of the highest efficiency conversion systems.

Keywords: Electric and thermal energy cogeneration; Hybrid energy generation system; Photovoltaic-PCM-Heat exchange device; Efficiency improvement; Coefficient of Performance.

[This article belongs to Journal of Thermal Engineering and Applications(jotea)]

How to cite this article: C. Armenta -Déu. Cogeneration System in Concentrated Photovoltaic Panels. Journal of Thermal Engineering and Applications. 2024; 11(02):1-14.
How to cite this URL: C. Armenta -Déu. Cogeneration System in Concentrated Photovoltaic Panels. Journal of Thermal Engineering and Applications. 2024; 11(02):1-14. Available from: https://journals.stmjournals.com/jotea/article=2024/view=168246



Browse Figures

References

  1. Trainer, T. (2007). Renewable energy cannot sustain a consumer society. Springer Science & Business Media.
  2. Andersen, O. (2013). Unintended consequences of renewable energy: Problems to be solved. Springer Science & Business Media.
  3. Richards, G., Noble, B., & Belcher, K. (2012). Barriers to renewable energy development: A case study of large-scale wind energy in Saskatchewan, Canada. Energy Policy, 42, 691-698.
  4. Toke, D. (2011). Ecological modernisation, social movements and renewable energy. Environmental Politics, 20(1), 60-77.
  5. Delicado, A., Figueiredo, E., & Silva, L. (2016). Community perceptions of renewable energies in Portugal: Impacts on environment, landscape and local development. Energy Research & Social Science, 13, 84-93.
  6. Lamhamedi, B. E. H., & de Vries, W. T. (2022). An Exploration of the land–(renewable) energy nexus. Land, 11(6), 767.
  7. Pasqualetti, M. J. (2011). Social barriers to renewable energy landscapes. Geographical review, 101(2), 201-223.
  8. Sánchez-Zapata, J. A., Clavero, M., Carrete, M., DeVault, T. L., Hermoso, V., Losada, M. A., … & Donázar, J. A. (2016). Effects of renewable energy production and infrastructure on wildlife. Current trends in wildlife research, 97-123.
  9. Northrup, J. M., & Wittemyer, G. (2013). Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecology letters, 16(1), 112-125.
  10. Sayed, E. T., Wilberforce, T., Elsaid, K., Rabaia, M. K. H., Abdelkareem, M. A., Chae, K. J., & Olabi, A. G. (2021). A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Science of the total environment, 766, 144505.
  11. Brunette, C. L., Byrne, J., & Williams, C. K. (2013). Resolving conflicts between renewable energy and wildlife by promoting a paradigm shift from commodity to commons-based policy. Journal of International Wildlife Law & Policy, 16(4), 375-397.
  12. Tinsley, E., Froidevaux, J. S., Zsebők, S., Szabadi, K. L., & Jones, G. (2023). Renewable energies and biodiversity: Impact of ground‐mounted solar photovoltaic sites on bat activity. Journal of Applied Ecology, 60(9), 1752-1762.
  13. Livet, F. (2011). The problem of intermittency of renewable energies: solar and wind energy (No. INIS-FR–14-0410). Sauvons le Climat-SLC.
  14. Sovacool, B. K. (2009). The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse?. Utilities Policy, 17(3-4), 288-296.
  15. Mlilo, N., Brown, J., & Ahfock, T. (2021). Impact of intermittent renewable energy generation penetration on the power system networks–A review. Technology and Economics of Smart Grids and Sustainable Energy, 6(1), 25.
  16. Rahimi, E., Rabiee, A., Aghaei, J., Muttaqi, K. M., & Nezhad, A. E. (2013). On the management of wind power intermittency. Renewable and Sustainable Energy Reviews, 28, 643-653.
  17. Suberu, M. Y., Mustafa, M. W., & Bashir, N. (2014). Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renewable and Sustainable Energy Reviews, 35, 499-514.
  18. Kosonen, I. (2018). Intermittency of renewable energy; review of current solutions and their sufficiency.
  19. Barton, J. P., & Infield, D. G. (2004). Energy storage and its use with intermittent renewable energy. IEEE transactions on energy conversion, 19(2), 441-448.
  20. Rugolo, J., & Aziz, M. J. (2012). Electricity storage for intermittent renewable sources. Energy & Environmental Science, 5(5), 7151-7160.
  21. Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy procedia, 33, 311-321.
  22. Rappaport, P. (1959). The photovoltaic effect and its utilization. Solar Energy, 3(4), 8-18.
  23. Dupré, O., Vaillon, R., & Green, M. A. (2017). Thermal behavior of photovoltaic devices. Physics and engineering, 10, 978-3.
  24. Wai Zhe, Leow & Yusoff, Mohd & Ibrahim, Safwati & Irwanto, Muhammad & Amelia, A & Zhubir, Nur & Fahmi, M Izuan & Rosle, Norfadilah. (2020). Simulation study on photovoltaic panel temperature under different solar radiation using computational fluid dynamic method. Journal of Physics: Conference Series. 1432. 012052. 10.1088/1742-6596/1432/1/012052.
  25. Muller, B. Marion, J. Rodriguez, ‘‘Evaluating the IEC 61215 Ed.3 NMOT procedure against the existing NOCT procedure with FV modules in a side-by-side configuration,’’ Proc. 38th IEEE Photovoltaic Specialists Conf., Jun. 2012, pp. 697–702.
  26. Du, Y., Fell, C. J., Duck, B., Chen, D., Liffman, K., Zhang, Y., … & Zhu, Y. (2016). Evaluation of photovoltaic panel temperature in realistic scenarios. Energy Conversion and Management, 108, 60-67.
  27. Rahman, M. M., Hasanuzzaman, M., & Rahim, N. A. (2015). Effects of various parameters on PV-module power and efficiency. Energy Conversion and Management, 103, 348-358.
  28. Amelia, A. R., Irwan, Y. M., Leow, W. Z., Irwanto, M., Safwati, I., & Zhafarina, M. (2016). Investigation of the effect temperature on photovoltaic (PV) panel output performance. J. Adv. Sci. Eng. Inf. Technol, 6(5), 682-688.
  29. Luque, A., & Hegedus, S. (Eds.). (2011). Handbook of photovoltaic science and engineering. John Wiley & Sons.
  30. Kumar K et al, “Standalone photovoltaic (FV) module outdoor testing facility for UAE climate”, CSEM-UAE Innovation Centre LLC, 2007.
  31. Grubišić-Čabo, F., Nižetić, S., & Giuseppe Marco, T. (2016). Photovoltaic panels: A review of the cooling techniques. Transactions of FAMENA, 40(SI-1), 63-74.
  32. Bayrak, F., Oztop, H. F., & Selimefendigil, F. (2020). Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management, 212, 112789.
  33. Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., & Kirpichnikova, I. (2020). Advanced cooling techniques of PV modules: A state of art. Case studies in thermal engineering, 21, 100674.
  34. Bahaidarah, H. M., Baloch, A. A., & Gandhidasan, P. (2016). Uniform cooling of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews, 57, 1520-1544.
  35. Zubeer, S. A., Mohammed, H. A., & Ilkan, M. (2017). A review of photovoltaic cells cooling techniques. In E3S Web of Conferences (Vol. 22, p. 00205). EDP Sciences.
  36. Sharaf, M., Yousef, M. S., & Huzayyin, A. S. (2022). Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental science and pollution research, 29(18), 26131-26159.
  37. Armenta-Déu, C. (2021) PV Panel Efficiency Improvement using a Hybrid PV-TEG Assembly System, International Journal of Embedded Systems and Emerging Technologies, Vol.7, Issue 2, pp.12-26 https://doi.org/10.37628/jeset.v7i2.1566
  38. Armenta-Déu, C., Mosquera, L. (2021) Heat Sink-PCM Device for PV Efficiency Improvement, Journal of Thermal Engineering and Applications, Volume 8, Issue 2, pages 35-48, doi: https://doi.org/10.37591/jotea.v8i2.5883
  39. Ghasemian, M., Sheikholeslami, M., & Dehghan, M. (2023). Performance improvement of photovoltaic/thermal systems by using twisted tapes in the coolant tubes with different cross-section patterns. Energy, 279, 128016.
  40. Khosravi, K., Eisapour, A. H., Rahbari, A., Mahdi, J. M., Talebizadehsardari, P., & Keshmiri, A. (2023). Photovoltaic-thermal system combined with wavy tubes, twisted tape inserts and a novel coolant fluid: energy and exergy analysis. Engineering Applications of Computational Fluid Mechanics, 17(1), 2208196.
  41. Waqas A, Jie J, “Effectiveness of pase change material material for cooling of photovoltaic panel for hot climate”. J Sol Energy Eng 140(4):041006, 2018
  42. M. A. Khan, R. Saidur, F. A. Al-Sulaiman, “A review for phase change materials (PCMs) in solar absorption refrigeration systems”. Renew. Sustain. Energy Rev., vol. 76, no. April 2016, pp. 105–137, 2017. DOI: 10.1016/j.rser.2017.03.070.
  43. Qu, M., Tang, Y., Zhang, T., Li, Z., & Chen, J. (2019). Experimental investigation on the multi-mode heat discharge process of a PCM heat exchanger during TES based reverse cycle defrosting using in cascade air source heat pumps. Applied Thermal Engineering, 151, 154-162.
  44. Bakhshipour, S., Valipour, M. S., & Pahamli, Y. (2017). Parametric analysis of domestic refrigerators using PCM heat exchanger. International journal of refrigeration, 83, 1-13.
  45. Khan, M. I. H. (2016). Conventional refrigeration systems using phase change material: a review. International Journal of Air-Conditioning and Refrigeration, 24(03), 1630007.
  46. Nilsson, L. J., Bauer, F., Åhman, M., Andersson, F. N., Bataille, C., de la Rue du Can, S., … & Vogl, V. (2021). An industrial policy framework for transforming energy and emissions intensive industries towards zero emissions. Climate Policy, 21(8), 1053-1065.
  47. Ngoc, U. N., & Schnitzer, H. (2008). Zero emissions systems in food processing industry. WSEAS transactions on environment and development, 4, 313-333.
  48. Teke, I., Ağra, Ö., Atayılmaz, Ş. Ö., & Demir, H. (2010). Determining the best type of heat exchangers for heat recovery. Applied Thermal Engineering, 30(6-7), 577-583.
  49. Arsenyeva, O. P., Tovazhnyansky, L. L., Kapustenko, P. O., & Khavin, G. L. (2011). Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries. Energy, 36(8), 4588-4598.
  50. Morales-Ruiz, S., Rigola, J., Oliet, C., & Oliva, A. (2016). Analysis and design of a drain water heat recovery storage unit based on PCM plates. Applied energy, 179, 1006-1019.
  51. Qin, Z., Ji, C., Low, Z. H., Tong, W., Wu, C., & Duan, F. (2022). Geometry effect of phase change material container on waste heat recovery enhancement. Applied Energy, 327, 120108.
  52. Moldgy, A., & Parameshwaran, R. (2018). Study on thermal energy storage properties of organic phase change material for waste heat recovery applications. Materials Today: Proceedings, 5(8), 16840-16848.
  53. Iqbal. An Introduction to Solar Radiation. Academic Press. 1983
  54. Angulo, “Desarrollo de un Sistema Fotovoltaico de Concentración para aplicaciones de Co-Generación”. Tesis de Maestría, Centro de Investigación en óptica, México, 2018.
  55. Markvart, T., & Castañer, L. (Eds.). (2003). Practical handbook of photovoltaics: fundamentals and applications. Elsevier.
  56. P. Incropera, D. P. De Witt, “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, New York, NY, USA, 4th edition, 1996.
  57. Mehling, M. Brütting, T. Haussmann, “PCM products and their fields of application – An overview of the state in 2020/2021”, Journal of Energy Storage, 2022. DOI: 10.1016/j.est.2022.104354.
  58. Zhang, D. Feng, L. Shi, L. Wang, Y. Jin, L. Tian, Z. Li, G. Wang, L. Zhao, Y. Yan “A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage,” Renew. Sustain. Energy Rev., vol. 135, no. August 2020, 2021. DOI: 10.1016/j.rser.2020.110127.
  59. A. Cengel, M. A. Boles, “Termodinámica”, McGraw-Hill, México, 8th edition, 2015.
  60. Armenta-Déu, C., Mosquera, L. (2021) Heat Sink-PCM Device for PV Efficiency Improvement. Journal of Thermal Engineering and Applications, Volume 8, Issue 2, pages 35-48 doi: https://doi.org/10.37591/jotea.v8i2.5883

Regular Issue Subscription Original Research
Volume 11
Issue 02
Received July 12, 2024
Accepted August 16, 2024
Published August 20, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.